Integrating STEM in Higher Education


Book Description

This timely book addresses the increasing need for collaboration, innovation and solution-focussed skills by looking at examples of cutting-edge pedagogy that can inform future directions. Integrating STEM in Higher Education shows how applying digital innovations that can be generated through the implementation of deliberately designed STEM education can change the world for the better. References to over 45 higher education institutions from around the world are included, where integrated approaches are already occurring. A wide range of teaching strategies and assessment methods are discussed, promoting a transformative method in which students can generate new knowledge within coursework and simultaneously develop skills and attributes for their future careers, lives and the world’s needs. This book is essential reading for STEM educators, administrators and academic leaders, as well as learning designers in higher education.




Integrated Approaches to STEM Education


Book Description

This book provides a platform for international scholars to share evidence for effective practices in integrated STEM education and contributes to the theoretical and practical knowledge gained from the diversity of approaches. Many publications on STEM education focus on one or two of the separate STEM disciplines without considering the potential for delivering STEM curriculum as an integrated approach.This publication analyzes the efficacy of an integrated STEM curriculum and instruction, providing evidence to examine and support various integrations. The volume focuses on the problems seen by academics working in the fields of science, technology, engineering and mathematics (STEM) and provides valuable, high quality research outcomes and a set of valued practices which have demonstrated their use and viability to improve the quality of integrated STEM education.




STEM Integration in K-12 Education


Book Description

STEM Integration in K-12 Education examines current efforts to connect the STEM disciplines in K-12 education. This report identifies and characterizes existing approaches to integrated STEM education, both in formal and after- and out-of-school settings. The report reviews the evidence for the impact of integrated approaches on various student outcomes, and it proposes a set of priority research questions to advance the understanding of integrated STEM education. STEM Integration in K-12 Education proposes a framework to provide a common perspective and vocabulary for researchers, practitioners, and others to identify, discuss, and investigate specific integrated STEM initiatives within the K-12 education system of the United States. STEM Integration in K-12 Education makes recommendations for designers of integrated STEM experiences, assessment developers, and researchers to design and document effective integrated STEM education. This report will help to further their work and improve the chances that some forms of integrated STEM education will make a positive difference in student learning and interest and other valued outcomes.




Innovative Learning Environments in STEM Higher Education


Book Description

As explored in this open access book, higher education in STEM fields is influenced by many factors, including education research, government and school policies, financial considerations, technology limitations, and acceptance of innovations by faculty and students. In 2018, Drs. Ryoo and Winkelmann explored the opportunities, challenges, and future research initiatives of innovative learning environments (ILEs) in higher education STEM disciplines in their pioneering project: eXploring the Future of Innovative Learning Environments (X-FILEs). Workshop participants evaluated four main ILE categories: personalized and adaptive learning, multimodal learning formats, cross/extended reality (XR), and artificial intelligence (AI) and machine learning (ML). This open access book gathers the perspectives expressed during the X-FILEs workshop and its follow-up activities. It is designed to help inform education policy makers, researchers, developers, and practitioners about the adoption and implementation of ILEs in higher education.




The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education


Book Description

In the United States, broad study in an array of different disciplines â€"arts, humanities, science, mathematics, engineeringâ€" as well as an in-depth study within a special area of interest, have been defining characteristics of a higher education. But over time, in-depth study in a major discipline has come to dominate the curricula at many institutions. This evolution of the curriculum has been driven, in part, by increasing specialization in the academic disciplines. There is little doubt that disciplinary specialization has helped produce many of the achievement of the past century. Researchers in all academic disciplines have been able to delve more deeply into their areas of expertise, grappling with ever more specialized and fundamental problems. Yet today, many leaders, scholars, parents, and students are asking whether higher education has moved too far from its integrative tradition towards an approach heavily rooted in disciplinary "silos". These "silos" represent what many see as an artificial separation of academic disciplines. This study reflects a growing concern that the approach to higher education that favors disciplinary specialization is poorly calibrated to the challenges and opportunities of our time. The Integration of the Humanities and Arts with Sciences, Engineering, and Medicine in Higher Education examines the evidence behind the assertion that educational programs that mutually integrate learning experiences in the humanities and arts with science, technology, engineering, mathematics, and medicine (STEMM) lead to improved educational and career outcomes for undergraduate and graduate students. It explores evidence regarding the value of integrating more STEMM curricula and labs into the academic programs of students majoring in the humanities and arts and evidence regarding the value of integrating curricula and experiences in the arts and humanities into college and university STEMM education programs.




Integrating STEM Teaching and Learning Into the K-2 Classroom


Book Description

"It's time to ramp up science, technology, engineering, and mathematics (STEM) in the K-2 classroom. Benefits of early learning in science and math include the following: (a) It leads to social-emotional development and fewer challenging behaviors; (b) it supports the development of a mind-set that includes curiosity, communication, persistence, and problem solving; (c) it contributes to gains in other subjects by supporting literacy and language development and better reading comprehension and writing skills; and (d) it includes subjects that can engage students from varying backgrounds, including English language learners. But delivering quality early STEM information requires expertise on the part of the teacher in scaffolding the lessons. Research shows that quality STEM teaching and learning is critical in early childhood education; however, it is also points out that the teachers themselves need support as they learn how to facilitate STEM learning in their classrooms. Professional learning experiences are needed to cover how teachers can make connections between STEM topics and the everyday activities they are already doing with their students. STEM teaching and learning does not need to become one more add-on to the K-2 classroom. STEM learning should be a natural extension to what teachers are already teaching. It was with this in mind that we set out to write this book. We wanted to focus on how to naturally integrate STEM learning into K-2 classroom experiences"--




STEM Road Map


Book Description

STEM Road Map: A Framework for Integrated STEM Education is the first resource to offer an integrated STEM curricula encompassing the entire K-12 spectrum, with complete grade-level learning based on a spiraled approach to building conceptual understanding. A team of over thirty STEM education professionals from across the U.S. collaborated on the important work of mapping out the Common Core standards in mathematics and English/language arts, the Next Generation Science Standards performance expectations, and the Framework for 21st Century Learning into a coordinated, integrated, STEM education curriculum map. The book is structured in three main parts—Conceptualizing STEM, STEM Curriculum Maps, and Building Capacity for STEM—designed to build common understandings of integrated STEM, provide rich curriculum maps for implementing integrated STEM at the classroom level, and supports to enable systemic transformation to an integrated STEM approach. The STEM Road Map places the power into educators’ hands to implement integrated STEM learning within their classrooms without the need for extensive resources, making it a reality for all students.




Theorizing STEM Education in the 21st Century


Book Description

Theorising STEM Education in the 21st Century is a book that captures the essence of Science, Technology, Engineering and Mathematics and the intricacies of STEM education in the contemporary society. It explores STEM as an interdisciplinary field as well as the individual disciplines that make up STEM. This ensures the field of STEM as a whole is theorised. The book provides critical insight on STEM education from Cairo to Cape Town or from America to Indonesia. With a team of authors from universities across the world, the book is a vital contribution to critical scholarship on STEM education in contemporary times.




Introduction To Computer Simulations For Integrated Stem College Education


Book Description

This book is written to introduce computer simulations to undergraduate college students, freshmen to seniors, in STEM fields. The book starts with concepts from Basic Mathematics: Geometry, Algebra and Calculus, Properties of Elementary Functions (Polynomials, Exponential, Hyperbolic and Trigonometric Functions) are studied and simple differential equations representing these functions are derived. Numerical approximations of first and second order differential equations are studied in terms of finite differences on uniform grids. Computer solutions are obtained via recursive relations or solutions of simultaneous algebraic equations. Comparisons with the exact solutions (known a priori) allow the calculations of the error due to discretization. After the students build confidence in this approach, more problems where the solutions are not known a priori are tackled with applications in many fields. Next, the book gradually addresses linear differential equations with variable coefficients and nonlinear differential equations, including problems of bifurcation and chaos.Applications in Dynamics, Solid Mechanics, Fluid Mechanics, Heat Transfer, Chemical Reactions, and Combustion are included. Biographies of 50 pioneering mathematicians and scientists who contributed to the materials of the book are briefly sketched, to shed light on the history of these STEM fields.Finally, the main concepts discussed in the book, are summarized to make sure that the students do not miss any of them. Also, references for further readings are given for interested readers.




STEM Education for the 21st Century


Book Description

This book chronicles the revolution in STEM teaching and learning that has arisen from a convergence of educational research, emerging technologies, and innovative ways of structuring both the physical space and classroom activities in STEM higher education. Beginning with a historical overview of US higher education and an overview of diversity in STEM in the US, the book sets a context in which our present-day innovation in science and technology urgently needs to provide more diversity and inclusion within STEM fields. Research-validated pedagogies using active learning and new types of research-based curriculum is transforming how physics, biology and other fields are taught in leading universities, and the book gives profiles of leading innovators in science education and examples of exciting new research-based courses taking root in US institutions. The book includes interviews with leading scientists and educators, case studies of new courses and new institutions, and descriptions of site visits where new trends in 21st STEM education are being developed. The book also takes the reader into innovative learning environments in engineering where students are empowered by emerging technologies to develop new creative capacity in their STEM education, through new centers for design thinking and liberal arts-based engineering. Equally innovative are new conceptual frameworks for course design and learning, and the book explores the concepts of Scientific Teaching, Backward Course Design, Threshold Concepts and Learning Taxonomies in a systematic way with examples from diverse scientific fields. Finally, the book takes the reader inside the leading centers for online education, including Udacity, Coursera and EdX, interviews the leaders and founders of MOOC technology, and gives a sense of how online education is evolving and what this means for STEM education. This book provides a broad and deep exploration into the historical context of science education and into some of the cutting-edge innovations that are reshaping how leading universities teach science and engineering. The emergence of exponentially advancing technologies such as synthetic biology, artificial intelligence and materials sciences has been described as the Fourth Industrial Revolution, and the book explores how these technologies will shape our future will bring a transformation of STEM curriculum that can help students solve many the most urgent problems facing our world and society.