Intelligent Beam Control in Accelerators


Book Description

This book systematically discusses the algorithms and principles for achieving stable and optimal beam (or products of the beam) parameters in particle accelerators. A four-layer beam control strategy is introduced to structure the subsystems related to beam controls, such as beam device control, beam feedback, and beam optimization. This book focuses on the global control and optimization layers. As a basis of global control, the beam feedback system regulates the beam parameters against disturbances and stabilizes them around the setpoints. The global optimization algorithms, such as the robust conjugate direction search algorithm, genetic algorithm, and particle swarm optimization algorithm, are at the top layer, determining the feedback setpoints for optimal beam qualities. In addition, the authors also introduce the applications of machine learning for beam controls. Selected machine learning algorithms, such as supervised learning based on artificial neural networks and Gaussian processes, and reinforcement learning, are discussed. They are applied to configure feedback loops, accelerate global optimizations, and directly synthesize optimal controllers. Authors also demonstrate the effectiveness of these algorithms using either simulation or tests at the SwissFEL. With this book, the readers gain systematic knowledge of intelligent beam controls and learn the layered architecture guiding the design of practical beam control systems.




Beam-based Correction and Optimization for Accelerators


Book Description

This book provides systematic coverage of the beam-based techniques that accelerator physicists use to improve the performance of large particle accelerators, including synchrotrons and linacs. It begins by discussing the basic principles of accelerators, before exploring the various error sources in accelerators and their impact on the machine's performances. The book then demonstrates the latest developments of beam-based correction techniques that can be used to address such errors and covers the new and expanding area of beam-based optimization. This book is an ideal, accessible reference book for physicists working on accelerator design and operation, and for postgraduate studying accelerator physics. Features: Entirely self-contained, exploring the theoretic background, including algorithm descriptions, and providing application guidance Accompanied by source codes of the main algorithms and sample codes online Uses real-life accelerator problems to illustrate principles, enabling readers to apply techniques to their own problems Xiaobiao Huang is an accelerator physicist at the SLAC National Accelerator Laboratory at Stanford University, USA. He graduated from Tsinghua University with a Bachelor of Science in Physics and a Bachelor of Engineering in Computer Science in 1999. He earned a PhD in Accelerator Physics from Indiana University, Bloomington, Indiana, USA, in 2005. He spent three years on thesis research work at Fermi National Accelerator Laboratory from 2003-2005. He has worked at SLAC as a staff scientist since 2006. He became Accelerator Physics Group Leader of the SPEAR3 Division, Accelerator Directorate in 2015. His research work in accelerator physics ranges from beam dynamics, accelerator design, and accelerator modelling and simulation to beam based measurements, accelerator control, and accelerator optimization. He has taught several courses at US Particle Accelerator School (USPAS), including Beam Based Diagnostics, Accelerator Physics, Advanced Accelerator Physics, and Special Topics in Accelerator Physics.




Artificial Intelligence Research in Particle Accelerator Control Systems for Beam Line Tuning


Book Description

Tuning particle accelerators is time consuming and expensive, with a number of inherently non-linear interactions between system components. Conventional control methods have not been successful in this domain and the result is constant and expensive monitoring of the systems by human operators. This is particularly true for the start-up and conditioning phase after a maintenance period or an unexpected fault. In turn, this often requires a step-by-step restart of the accelerator. Surprisingly few attempts have been made to apply intelligent accelerator control techniques to help with beam tuning, fault detection, and fault recovery problems. The reason for that might be that accelerator facilities are rare and difficult to understand systems that require detailed expert knowledge about the underlying physics as well as months if not years of experience to understand the relationship between individual components, particularly if they are geographically disjoint. This paper will give an overview about the research effort in the accelerator community that has been dedicated to the use of artificial intelligence methods for accelerator beam line tuning.




Measurement and Control of Charged Particle Beams


Book Description

From the reviews: "This book is a very welcome and valuable addition to the accelerator literature. As noted by the authors, there is relatively little material in the book specifically for low-energy machines, but industrial users may still find it useful to read." Cern Courier




A Framework for a General Purpose Intelligent Control System for Particle Accelerators. Phase II Final Report


Book Description

Vista Control Systems, Inc. has developed a portable system for intelligent accelerator control. The design is general in scope and is thus configurable to a wide range of accelerator facilities and control problems. The control system employs a multi-layer organization in which knowledge-based decision making is used to dynamically configure lower level optimization and control algorithms.




Measurement and Control of Charged Particle Beams


Book Description

This advanced textbook and reference is the first comprehensive and systematic review of all methods used for the measurement, correction, and control of the beam dynamics of modern particle accelerators. Based on material presented in several lectures at the US Particle Accelerator School, the text is intended for graduate students starting research or work in the field of beam physics. Relativistic beams in linear accelerators and storage rings provide the focus. After a review of linear optics, the text addresses basic and advanced techniques for beam control, plus a variety of methods for the manipulation of particle-beam properties. In each case, specific procedures are illustrated by examples from operational accelerators, e.g., CERN, DESY, SLAC, KEK, LBNL, and FNAL. The book also treats special topics such as injection and extraction methods, beam cooling, spin transport, and polarization. Problems and solutions enhance the book's usefulness in graduate courses. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.




A Practical Introduction to Beam Physics and Particle Accelerators


Book Description

This book provides a brief exposition of the principles of beam physics and particle accelerators with an emphasis on numerical examples employing readily available computer tools. However, it avoids detailed derivations, instead inviting the reader to use general high-end languages such as Mathcad and Matlab, as well as specialized particle accelerator codes (e.g. MAD, WinAgile, Elegant, and others) to explore the principles presented. This approach allows readers to readily identify relevant design parameters and their scaling. In addition, the computer input files can serve as templates that can be easily adapted to other related situations. The examples and computer exercises comprise basic lenses and deflectors, fringe fields, lattice and beam functions, synchrotron radiation, beam envelope matching, betatron resonances, and transverse and longitudinal emittance and space charge. The last chapter presents examples of two major types of particle accelerators: radio frequency linear accelerators (RF linacs) and storage rings. Lastly, the appendix gives readers a brief description of the computer tools employed and concise instructions for their installation and use in the most popular computer platforms (Windows, Macintosh and Ubuntu Linux). Hyperlinks to websites containing all relevant files are also included. An essential component of the book is its website (actually part of the author's website at the University of Maryland), which contains the files that reproduce results given in the text as well as additional material such as technical notes and movies.




An Artificial Intelligence Approach to Accelerator Control Systems


Book Description

An experiment was recently started at LAMPF to evaluate the power and limitations of using artificial intelligence techniques to solve problems in accelerator control and operation. A knowledge base was developed to describe the characteristics and the relationships of the first 30 devices in the LAMPF H+ beam line. Each device was categorized and pertinent attributes for each category defined. Specific values were assigned in the knowledge base to represent each actual device. Relationships between devices are modeled using the artificial intelligence techniques of rules, active values, and object-oriented methods. This symbolic model, built using the Knowledge Engineering Environment (KEE) system, provides a framework for analyzing faults, tutoring trainee operators, and offering suggestions to assist in beam tuning. Based on information provided by the domain expert responsible for tuning this portion of the beam line, additional rules were written to describe how he tunes, how he analyzes what is actually happening, and how he deals with failures. Initial results have shown that artificial intelligence techniques can be a useful adjunct to traditional methods of numerical simulation. Successful and efficient operation of future accelerators may depend on the proper merging of symbolic reasoning and conventional numerical control algorithms.




RF Linear Accelerators


Book Description

Borne out of twentieth-century science and technology, the field of RF (radio frequency) linear accelerators has made significant contributions to basic research, energy, medicine, and national defense. As we advance into the twenty-first century, the linac field has been undergoing rapid development as the demand for its many applications, emphasizing high-energy, high-intensity, and high-brightness output beams, continues to grow. RF Linear Accelerators is a textbook that is based on a US Particle Accelerator School graduate-level course that fills the need for a single introductory source on linear accelerators. The text provides the scientific principles and up-to-date technological aspects for both electron and ion linacs. This second edition has been completely revised and expanded to include examples of modern RF linacs, special linacs and special techniques as well as superconducting linacs. In addition, problem sets at the end of each chapter supplement the material covered. The book serves as a must-have reference for professionals interested in beam physics and accelerator technology.




Particle Accelerator Physics


Book Description

This two-volume book serves as a thorough introduction to the field of high-energy particle accelerator physics and beam dynamics. Volume 1 provides a general understanding of the field and a firm basis for the study of the more elaborate topic, mainly nonlinear and higher-order beam dynamics, which is the subject of Volume 2.