Intelligent Image Analysis for Plant Phenotyping


Book Description

Domesticated crops are the result of artificial selection for particular phenotypes or, in some cases, natural selection for an adaptive trait. Plant traits can be identified through image-based plant phenotyping, a process that was, until recently, strenous and time-consuming. Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques, using computer vision and imaging technologies. These methodologies provide an automated, non-invasive, and scalable mechanism by which to define and collect plant phenotypes. Beautifully illustrated, with numerous color images, the book focuses on phenotypes measured from individual plants under controlled experimental conditions, which are widely available in high-throughput systems. Features: Presents methodologies for image processing, including data-driven and machine learning techniques for plant phenotyping. Features information on advanced techniques for extracting phenotypes through images and image sequences captured in a variety of modalities. Includes real-world scientific problems, including predicting yield by modeling interactions between plant data and environmental information. Discusses the challenge of translating images into biologically informative quantitative phenotypes. A practical resource for students, researchers, and practitioners, this book is invaluable for those working in the emerging fields at the intersection of computer vision and plant sciences.




Plant Image Analysis


Book Description

The application of imaging techniques in plant and agricultural sciences had previously been confined to images obtained through remote sensing techniques. Technological advancements now allow image analysis for the nondestructive and objective evaluation of biological objects. This has opened a new window in the field of plant science. Plant Image




Intelligent Image Analysis for Plant Phenotyping


Book Description

Domesticated crops are the result of artificial selection for particular phenotypes or, in some cases, natural selection for an adaptive trait. Plant traits can be identified through image-based plant phenotyping, a process that was, until recently, strenous and time-consuming. Intelligent Image Analysis for Plant Phenotyping reviews information on time-saving techniques, using computer vision and imaging technologies. These methodologies provide an automated, non-invasive, and scalable mechanism by which to define and collect plant phenotypes. Beautifully illustrated, with numerous color images, the book focuses on phenotypes measured from individual plants under controlled experimental conditions, which are widely available in high-throughput systems. Features: Presents methodologies for image processing, including data-driven and machine learning techniques for plant phenotyping. Features information on advanced techniques for extracting phenotypes through images and image sequences captured in a variety of modalities. Includes real-world scientific problems, including predicting yield by modeling interactions between plant data and environmental information. Discusses the challenge of translating images into biologically informative quantitative phenotypes. A practical resource for students, researchers, and practitioners, this book is invaluable for those working in the emerging fields at the intersection of computer vision and plant sciences.




Advances Plant Phenotyping More Sustaihb


Book Description

Plant phenotyping is an emerging technology that involves the quantitative analysis of structural and functional plant traits. However, it is widely recognised that phenotyping needs to match similar advances in genetics if it is to not create a bottleneck in plant breeding. Advances in plant phenotyping for more sustainable crop production reviews the wealth of research on advances in plant phenotyping to meet this challenge, such as the development of new technologies including hyperspectral sensors such as LIDAR, NIR/SWIR, as well as alternative delivery/carrier systems, such as ground-based proximal distance systems and UAVs. The book details the development of plant phenotyping as a technique to analyse crop roots and functionality, as well as its use in understanding and improving crop response to biotic and abiotic stresses.




Machine Vision and Machine Learning for Plant Phenotyping and Precision Agriculture


Book Description

Plant phenotyping (PP) describes the physiological and biochemical properties of plants affected by both genotypes and environments. It is an emerging research field that is assisting the breeding and cultivation of new crop varieties to be more productive and resilient to challenging environments. Precision agriculture (PA) uses sensing technologies to observe crops and then manage them optimally to ensure that they grow in healthy conditions, have maximum productivity, and have minimal negative effects on the environment. Traditionally, the observation of plant traits heavily relies on human experts which is labor intensive, time-consuming, and subjective. Automatic crop traits measurement in PP and PA are two different fields, but they share the same sensing and data processing technologies in many respects. Recently, driven by computer and sensor technologies, machine vision (MV) and machine learning (ML) have contributed to accurate, high-throughput, and nondestructive plant phenotyping and precision agriculture. However, these technologies are still in their infant stage and there are many challenges and questions related to them that still need to be addressed. The goal of this Research Topic is to provide a platform to share the latest research results on the application of MV and ML for PP and PA. It aims to highlight cutting-edge technologies, bottle-necks, and future research directions for MV and ML in crop breeding, crop cultivation, disease management, weed control, and pest control.







Modern Techniques for Agricultural Disease Management and Crop Yield Prediction


Book Description

Since agriculture is one of the key parameters in assessing the gross domestic product (GDP) of any country, it has become crucial to transition from traditional agricultural practices to smart agriculture. New agricultural technologies provide numerous opportunities to maximize crop yield by recognizing and analyzing diseases and other natural variables that may affect it. Therefore, it is necessary to understand how computer-assisted technologies can best be utilized and adopted in the conversion to smart agriculture. Modern Techniques for Agricultural Disease Management and Crop Yield Prediction is an essential publication that widens the spectrum of computational methods that can aid in agriculture disease management, weed detection, and crop yield prediction. Featuring coverage on a wide range of topics such as soil and crop sensors, swarm robotics, and weed detection, this book is ideally designed for environmentalists, farmers, botanists, agricultural engineers, computer engineers, scientists, researchers, practitioners, and students seeking current research on technology and techniques for agricultural diseases and predictive trends.




Sensing, Data Managing, and Control Technologies for Agricultural Systems


Book Description

Agricultural automation is the emerging technologies which heavily rely on computer-integrated management and advanced control systems. The tedious farming tasks had been taken over by agricultural machines in last century, in new millennium, computer-aided systems, automation, and robotics has been applied to precisely manage agricultural production system. With agricultural automation technologies, sustainable agriculture is being developed based on efficient use of land, increased conservation of water, fertilizer and energy resources. The agricultural automation technologies refer to related areas in sensing & perception, reasoning & learning, data communication, and task planning & execution. Since the literature on this diverse subject is widely scattered, it is necessary to review current status and capture the future challenges through a comprehensive monograph. In this book we focus on agricultural automation and provide critical reviews of advanced control technologies, their merits and limitations, application areas and research opportunities for further development. This collection thus serves as an authoritative treatise that can help researchers, engineers, educators, and students in the field of sensing, control, and automation technologies for production agriculture.







High-Throughput Crop Phenotyping


Book Description

This book provides an overview of the innovations in crop phenotyping using emerging technologies, i.e., high-throughput crop phenotyping technology, including its concept, importance, breakthrough and applications in different crops and environments. Emerging technologies in sensing, machine vision and high-performance computing are changing the world beyond our imagination. They are also becoming the most powerful driver of the innovation in agriculture technology, including crop breeding, genetics and management. It includes the state of the art of technologies in high-throughput phenotyping, including advanced sensors, automation systems, ground-based or aerial robotic systems. It also discusses the emerging technologies of big data processing and analytics, such as advanced machine learning and deep learning technologies based on high-performance computing infrastructure. The applications cover different organ levels (root, shoot and seed) of different crops (grains, soybean, maize, potato) at different growth environments (open field and controlled environments). With the contribution of more than 20 world-leading researchers in high-throughput crop phenotyping, the authors hope this book provides readers the needed information to understand the concept, gain the insides and create the innovation of high-throughput phenotyping technology.