Intelligent Prognostics for Engineering Systems with Machine Learning Techniques


Book Description

The text discusses the latest data-driven, physics-based, and hybrid approaches employed in each stage of industrial prognostics and reliability estimation. It will be a useful text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, electrical engineering, and computer science. The book Discusses basic as well as advance research in the field of prognostics. Explores integration of data collection, fault detection, degradation modeling and reliability prediction in one volume. Covers prognostics and health management (PHM) of engineering systems. Discusses latest approaches in the field of prognostics based on machine learning. The text deals with tools and techniques used to predict/ extrapolate/ forecast the process behavior, based on current health state assessment and future operating conditions with the help of Machine learning. It will serve as a useful reference text for senior undergraduate, graduate students, and academic researchers in areas such as industrial and production engineering, manufacturing science, electrical engineering, and computer science.







Diagnostics and Prognostics of Engineering Systems: Methods and Techniques


Book Description

Industrial Prognostics predicts an industrial system’s lifespan using probability measurements to determine the way a machine operates. Prognostics are essential in determining being able to predict and stop failures before they occur. Therefore the development of dependable prognostic procedures for engineering systems is important to increase the system’s performance and reliability. Diagnostics and Prognostics of Engineering Systems: Methods and Techniques provides widespread coverage and discussions on the methods and techniques of diagnosis and prognosis systems. Including practical examples to display the method’s effectiveness in real-world applications as well as the latest trends and research, this reference source aims to introduce fundamental theory and practice for system diagnosis and prognosis.




Prognostics and Health Management of Engineering Systems


Book Description

This book introduces the methods for predicting the future behavior of a system’s health and the remaining useful life to determine an appropriate maintenance schedule. The authors introduce the history, industrial applications, algorithms, and benefits and challenges of PHM (Prognostics and Health Management) to help readers understand this highly interdisciplinary engineering approach that incorporates sensing technologies, physics of failure, machine learning, modern statistics, and reliability engineering. It is ideal for beginners because it introduces various prognostics algorithms and explains their attributes, pros and cons in terms of model definition, model parameter estimation, and ability to handle noise and bias in data, allowing readers to select the appropriate methods for their fields of application.Among the many topics discussed in-depth are:• Prognostics tutorials using least-squares• Bayesian inference and parameter estimation• Physics-based prognostics algorithms including nonlinear least squares, Bayesian method, and particle filter• Data-driven prognostics algorithms including Gaussian process regression and neural network• Comparison of different prognostics algorithms divThe authors also present several applications of prognostics in practical engineering systems, including wear in a revolute joint, fatigue crack growth in a panel, prognostics using accelerated life test data, fatigue damage in bearings, and more. Prognostics tutorials with a Matlab code using simple examples are provided, along with a companion website that presents Matlab programs for different algorithms as well as measurement data. Each chapter contains a comprehensive set of exercise problems, some of which require Matlab programs, making this an ideal book for graduate students in mechanical, civil, aerospace, electrical, and industrial engineering and engineering mechanics, as well as researchers and maintenance engineers in the above fields.




Intelligent Fault Diagnosis and Prognosis for Engineering Systems


Book Description

Expert guidance on theory and practice in condition-based intelligent machine fault diagnosis and failure prognosis Intelligent Fault Diagnosis and Prognosis for Engineering Systems gives a complete presentation of basic essentials of fault diagnosis and failure prognosis, and takes a look at the cutting-edge discipline of intelligent fault diagnosis and failure prognosis technologies for condition-based maintenance. It thoroughly details the interdisciplinary methods required to understand the physics of failure mechanisms in materials, structures, and rotating equipment, and also presents strategies to detect faults or incipient failures and predict the remaining useful life of failing components. Case studies are used throughout the book to illustrate enabling technologies. Intelligent Fault Diagnosis and Prognosis for Engineering Systems offers material in a holistic and integrated approach that addresses the various interdisciplinary components of the field--from electrical, mechanical, industrial, and computer engineering to business management. This invaluably helpful book: * Includes state-of-the-art algorithms, methodologies, and contributions from leading experts, including cost-benefit analysis tools and performance assessment techniques * Covers theory and practice in a way that is rooted in industry research and experience * Presents the only systematic, holistic approach to a strongly interdisciplinary topic




Prognostics


Book Description

Prognostics is the science of making predictions of engineering systems. It is part of a suite of techniques that determine whether a system is behaving within nominal operational performance and - if it does not - that determine what is wrong and how long it will take until the system no longer fulfills certain functional requirements. This book presents the latest developments and research findings on the topic of prognostics by the Prognostics Center of Excellence at NASA Ames Research Center. The book is intended to provide a practitioner with an understanding of the foundational concepts as well as practical tools to perform prognostics and health management on different types of engineering systems and in particular to predict remaining useful life.




Building Intelligent Systems


Book Description

Produce a fully functioning Intelligent System that leverages machine learning and data from user interactions to improve over time and achieve success. This book teaches you how to build an Intelligent System from end to end and leverage machine learning in practice. You will understand how to apply your existing skills in software engineering, data science, machine learning, management, and program management to produce working systems. Building Intelligent Systems is based on more than a decade of experience building Internet-scale Intelligent Systems that have hundreds of millions of user interactions per day in some of the largest and most important software systems in the world. What You’ll Learn Understand the concept of an Intelligent System: What it is good for, when you need one, and how to set it up for success Design an intelligent user experience: Produce data to help make the Intelligent System better over time Implement an Intelligent System: Execute, manage, and measure Intelligent Systems in practice Create intelligence: Use different approaches, including machine learning Orchestrate an Intelligent System: Bring the parts together throughout its life cycle and achieve the impact you want Who This Book Is For Software engineers, machine learning practitioners, and technical managers who want to build effective intelligent systems




Advances in Data-Driven Computing and Intelligent Systems


Book Description

The volume is a collection of best selected research papers presented at International Conference on Advances in Data-driven Computing and Intelligent Systems (ADCIS 2022) held at BITS Pilani, K K Birla Goa Campus, Goa, India during 23 – 25 September 2022. It includes state-of-the art research work in the cutting-edge technologies in the field of data science and intelligent systems. The book presents data-driven computing; it is a new field of computational analysis which uses provided data to directly produce predictive outcomes. The book will be useful for academicians, research scholars, and industry persons.




Business Information Systems


Book Description

This book constitutes the proceedings of the 21st International Conference on Business Information Systems, BIS 2018, held in Berlin, Germany, in July 2018. The BIS conference follows popular research trends, both in the academic and the business domain. Thus the theme of BIS 2018 was "Digital Transformation - An Imperative in Today's Business Markets". The 30 papers presented in this volume were carefully reviewed and selected from 96 submissions. They were organized in topical sections named: big and smart data and artificial intelligence; business and enterprise modeling; ICT project management; process management; smart infrastructures; social media and Web-based business information systems; applications, evaluations, and experiences.




Modern Advances in Applied Intelligence


Book Description

The two volume set LNAI 8481 and 8482 constitutes the refereed conference proceedings of the 27th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems, IEA/AIE 2014, held in Kaohsiung, Taiwan, in June 2014. The total of 106 papers selected for the proceedings were carefully reviewed and selected from various submissions. The papers deal with a wide range of topics from applications of applied intelligent systems to solve real-life problems in all areas including engineering, science, industry, automation and robotics, business and finance, medicine and biomedicine, bioinformatics, cyberspace and human-machine interaction.