Intelligent Systems and Methods to Combat Covid-19


Book Description

This book discusses intelligent systems and methods to prevent further spread of COVID-19, including artificial intelligence, machine learning, computer vision, signal processing, pattern recognition, and robotics. It not only explores detection/screening of COVID-19 positive cases using one type of data, such as radiological imaging data, but also examines how data analytics-based tools can help predict/project future pandemics. In addition, it highlights various challenges and opportunities, like social distancing, and addresses issues such as data collection, privacy, and security, which affect the robustness of AI-driven tools. Also investigating data-analytics-based tools for projections using time series data, pattern analysis tools for unusual pattern discovery (anomaly detection) in image data, as well as AI-enabled robotics and its possible uses, the book will appeal to a broad readership, including academics, researchers and industry professionals.




Computational Intelligence for COVID-19 and Future Pandemics


Book Description

The book covers a wide topic collection starting from essentials of Computational Intelligence to advance, and possible application types against COVID-19 as well as its effects on the field of medical, social, and different data-oriented research scopes. Among these topics, the book also covers very recently, vital topics in terms of fighting against COVID-19 and solutions for future pandemics. The book includes the use of computational intelligence for especially medical diagnosis and treatment, and also data-oriented tracking-predictive solutions, which are key components currently for fighting against COVID-19. In this way, the book will be a key reference work for understanding how computational intelligence and the most recent technologies (i.e. Internet of Healthcare Thing, big data, and data science techniques) can be employed in solution phases and how they change the way of future solutions. The book also covers research works with negative results so that possible disadvantages of using computational intelligence solutions and/or experienced side-effects can be known widely for better future of medical solutions and use of intelligent systems against COVID-19 and pandemics. The book is considering both theoretical and applied views to enable readers to be informed about not only research works but also theoretical views about essentials/components of intelligent systems against COVID-19/pandemics, possible modeling scenarios with current and future perspective as well as solution strategies thought by researchers all over the world.




Artificial Intelligence for COVID-19


Book Description

This book presents a compilation of the most recent implementation of artificial intelligence methods for solving different problems generated by the COVID-19. The problems addressed came from different fields and not only from medicine. The information contained in the book explores different areas of machine and deep learning, advanced image processing, computational intelligence, IoT, robotics and automation, optimization, mathematical modeling, neural networks, information technology, big data, data processing, data mining, and likewise. Moreover, the chapters include the theory and methodologies used to provide an overview of applying these tools to the useful contribution to help to face the emerging disaster. The book is primarily intended for researchers, decision makers, practitioners, and readers interested in these subject matters. The book is useful also as rich case studies and project proposals for postgraduate courses in those specializations.




Computational Intelligence Methods in COVID-19: Surveillance, Prevention, Prediction and Diagnosis


Book Description

The novel coronavirus disease 2019 (COVID-19) pandemic has posed a major threat to human life and health. This book is beneficial for interdisciplinary students, researchers, and professionals to understand COVID-19 and how computational intelligence can be used for the purpose of surveillance, control, prevention, prediction, diagnosis, and potential treatment of the disease. The book contains different aspects of COVID-19 that includes fundamental knowledge, epidemic forecast models, surveillance and tracking systems, IoT- and IoMT-based integrated systems for COVID-19, social network analysis systems for COVID-19, radiological images (CT, X-ray) based diagnosis system, and computational intelligence and in silico drug design and drug repurposing methods against COVID-19 patients. The contributing authors of this volume are experts in their fields and they are from various reputed universities and institutions across the world. This volume is a valuable and comprehensive resource for computer and data scientists, epidemiologists, radiologists, doctors, clinicians, pharmaceutical professionals, along with graduate and research students of interdisciplinary and multidisciplinary sciences.




Artificial Intelligence and Machine Learning for COVID-19


Book Description

This book is dedicated to addressing the major challenges in fighting COVID-19 using artificial intelligence (AI) and machine learning (ML) – from cost and complexity to availability and accuracy. The aim of this book is to focus on both the design and implementation of AI-based approaches in proposed COVID-19 solutions that are enabled and supported by sensor networks, cloud computing, and 5G and beyond. This book presents research that contributes to the application of ML techniques to the problem of computer communication-assisted diagnosis of COVID-19 and similar diseases. The authors present the latest theoretical developments, real-world applications, and future perspectives on this topic. This book brings together a broad multidisciplinary community, aiming to integrate ideas, theories, models, and techniques from across different disciplines on intelligent solutions/systems, and to inform how cognitive systems in Next Generation Networks (NGN) should be designed, developed, and evaluated while exchanging and processing critical health information. Targeted readers are from varying disciplines who are interested in implementing the smart planet/environments vision via wireless/wired enabling technologies.




The Effect of Coronavirus Disease (COVID-19) on Business Intelligence


Book Description

This book includes recent research works on how business around the world affected by the time of COVID-19 pandemic. The impact of recent technological developments has had a tremendous impact on how we manage disasters. These developments have changed how countries and governments collect information. The COVID-19 pandemic has forced online service companies to maintain and build relationships with consumers when their world turns. Businesses are now facing tension between generating sales during a period of severe economic hardship and respect for threats to life and livelihoods that have changed consumer preferences.




How to Prevent the Next Pandemic


Book Description

Governments, businesses, and individuals around the world are thinking about what happens after the COVID-19 pandemic. Can we hope to not only ward off another COVID-like disaster but also eliminate all respiratory diseases, including the flu? Bill Gates, one of our greatest and most effective thinkers and activists, believes the answer is yes. The author of the #1 New York Times best seller How to Avoid a Climate Disaster lays out clearly and convincingly what the world should have learned from COVID-19 and what all of us can do to ward off another catastrophe like it. Relying on the shared knowledge of the world’s foremost experts and on his own experience of combating fatal diseases through the Gates Foundation, Gates first helps us understand the science of infectious diseases. Then he shows us how the nations of the world, working in conjunction with one another and with the private sector, how we can prevent a new pandemic from killing millions of people and devastating the global economy. Here is a clarion call—strong, comprehensive, and of the gravest importance.




Within the Lack of Chest COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and Deep Transfer Learning


Book Description

The coronavirus (COVID-19) pandemic is putting healthcare systems across the world under unprecedented and increasing pressure according to theWorld Health Organization (WHO). With the advances in computer algorithms and especially Artificial Intelligence, the detection of this type of virus in the early stages will help in fast recovery and help in releasing the pressure off healthcare systems.




Artificial Intelligence in Healthcare


Book Description

Artificial Intelligence (AI) in Healthcare is more than a comprehensive introduction to artificial intelligence as a tool in the generation and analysis of healthcare data. The book is split into two sections where the first section describes the current healthcare challenges and the rise of AI in this arena. The ten following chapters are written by specialists in each area, covering the whole healthcare ecosystem. First, the AI applications in drug design and drug development are presented followed by its applications in the field of cancer diagnostics, treatment and medical imaging. Subsequently, the application of AI in medical devices and surgery are covered as well as remote patient monitoring. Finally, the book dives into the topics of security, privacy, information sharing, health insurances and legal aspects of AI in healthcare. - Highlights different data techniques in healthcare data analysis, including machine learning and data mining - Illustrates different applications and challenges across the design, implementation and management of intelligent systems and healthcare data networks - Includes applications and case studies across all areas of AI in healthcare data




Deep Learning in Medical Image Analysis


Book Description

This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.