Intense Neutron Sources


Book Description







Atomic energy


Book Description




Handbook of Fast Neutron Generators, Volume I


Book Description

This handbook reviews those problems and methods of science and technology where the neutrons produced in the 3H/d, N/4He, and 2H/d, n/3He reactions play the main role. This two-volume set: Discusses possible applications of these small generators as thermal neutron sources Enables suitable topics to be selected for education and training, provides a wide range of experiments with the detection of neutrons and charged particles, including the study of shielding and the generator technology itself Gives a review of important operational characteristics of neutron generators and the necessary instruments connected with these applications Provides an account of recent results of fast neutron activation analysis in various fields.







Intense Neutron Sources


Book Description







Nuclear Explosions as Neutron Sources


Book Description

Data are presented from some experiments which have been performed at Los Alamos which uniquely required the intense neutron sources provided by nuclear explosions. These studies concerned the following subjects: 1) Symmetry of fission of U235 at individual resonance levels in the epithermal neutron region. 2) Synthesis of new elements. 3) Tracer studies of fallout from the upper stratosphere.




Photoneutron Sources


Book Description




Accelerator-based Intense Neutron Source for Materials R D.


Book Description

Accelerator-based neutron sources for R D of materials in nuclear energy systems, including fusion reactors, can provide sufficient neutron flux, flux-volume, fluence and other attractive features for many aspects of materials research. The neutron spectrum produced from the D-Li reaction has been judged useful for many basic materials research problems, and to be a satisfactory approximation to that of the fusion process. The technology of high-intensity linear accelerators can readily be applied to provide the deuteron beam for the neutron source. Earlier applications included the Los Alamos Meson Physics Facility and the Fusion Materials Irradiation Test facility prototype. The key features of today's advanced accelerator technology are presented to illustrate the present state-of-the-art in terms of improved understanding of basic physical principles and engineering technique, and to show how these advances can be applied to present demands in a timely manner. These features include how to produce an intense beam current with the high quality required to minimize beam losses along the accelerator and transport system that could cause maintenance difficulties, by controlling the beam emittance through proper choice of the operating frequency, balancing of the forces acting on the beam, and realization in practical hardware. A most interesting aspect for materials researchers is the increased flexibility and opportunities for experimental configurations that a modern accelerator-based source could add to the set of available tools. 8 refs., 5 figs.