Scaling Limits of Interacting Particle Systems


Book Description

This book has been long awaited in the "interacting particle systems" community. Begun by Claude Kipnis before his untimely death, it was completed by Claudio Landim, his most brilliant student and collaborator. It presents the techniques used in the proof of the hydrodynamic behavior of interacting particle systems.




Large Scale Dynamics of Interacting Particles


Book Description

This book deals with one of the fundamental problems of nonequilibrium statistical mechanics: the explanation of large-scale dynamics (evolution differential equations) from models of a very large number of interacting particles. This book addresses both researchers and students. Much of the material presented has never been published in book-form before.




Stochastic Interacting Systems: Contact, Voter and Exclusion Processes


Book Description

Interactive particle systems is a branch of probability theory with close connections to mathematical physics and mathematical biology. This book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. It explains and develops many of the most useful techniques in the field.




Interacting Particle Systems


Book Description

From the reviews "This book presents a complete treatment of a new class of random processes, which have been studied intensively during the last fifteen years. None of this material has ever appeared in book form before. The high quality of this work [...] makes a fascinating subject and its open problem as accessible as possible." Mathematical Reviews




Stochastic Interacting Systems: Contact, Voter and Exclusion Processes


Book Description

Interactive Particle Systems is a branch of Probability Theory with close connections to Mathematical Physics and Mathematical Biology. In 1985, the author wrote a book (T. Liggett, Interacting Particle System, ISBN 3-540-96069) that treated the subject as it was at that time. The present book takes three of the most important models in the area, and traces advances in our understanding of them since 1985. In so doing, many of the most useful techniques in the field are explained and developed, so that they can be applied to other models and in other contexts. Extensive Notes and References sections discuss other work on these and related models. Readers are expected to be familiar with analysis and probability at the graduate level, but it is not assumed that they have mastered the material in the 1985 book. This book is intended for graduate students and researchers in Probability Theory, and in related areas of Mathematics, Biology and Physics.




From Particle Systems to Partial Differential Equations


Book Description

This book includes the joint proceedings of the International Conference on Particle Systems and PDEs VI, VII and VIII. Particle Systems and PDEs VI was held in Nice, France, in November/December 2017, Particle Systems and PDEs VII was held in Palermo, Italy, in November 2018, and Particle Systems and PDEs VIII was held in Lisbon, Portugal, in December 2019. Most of the papers are dealing with mathematical problems motivated by different applications in physics, engineering, economics, chemistry and biology. They illustrate methods and topics in the study of particle systems and PDEs and their relation. The book is recommended to probabilists, analysts and to those mathematicians in general, whose work focuses on topics in mathematical physics, stochastic processes and differential equations, as well as to those physicists who work in statistical mechanics and kinetic theory.




Advances in Disordered Systems, Random Processes and Some Applications


Book Description

This book offers a unified perspective on the study of complex systems with contributions written by leading scientists from various disciplines, including mathematics, physics, computer science, biology, economics and social science. It is written for researchers from a broad range of scientific fields with an interest in recent developments in complex systems.




Scaling Limits in Statistical Mechanics and Microstructures in Continuum Mechanics


Book Description

Collective behavior in systems with many components, blow-ups with emergence of microstructures are proofs of the double, continuum and atomistic, nature of macroscopic systems, an issue which has always intrigued scientists and philosophers. Modern technologies have made the question more actual and concrete with recent, remarkable progresses also from a mathematical point of view. The book focuses on the links connecting statistical and continuum mechanics and, starting from elementary introductions to both theories, it leads to actual research themes. Mathematical techniques and methods from probability, calculus of variations and PDE are discussed at length.







First International Congress of Chinese Mathematicians


Book Description

The International Congress of Mathematicians was an historical event that was held at the Morningside Center of Mathematics of the Chinese Academy of Sciences (Beijing). It was the first occasion where Chinese mathematicians from all over the world gathered to present their research. The Morningside Mathematics lectures were given by R. Borcherds, J. Coates, R. Graham, and D. Stroock. Other distinguished speakers included J.-P. Bourguignon, J. Jöst, M. Taylor, and S. L. Lee. Topics covered in the volume include algebra and representation theory, algebraic geometry, number theory and automorphic forms, Riemannian geometry and geometric analysis, mathematical physics, topology, complex analysis and complex geometry, computational mathematics, and combinatorics. Titles in this series are copublished with International Press, Cambridge, MA.