Interacting Systems Far from Equilibrium


Book Description

This book presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions. Within the Green's function formalism, the basic sets of equations for these diverse systems are similar, and approximations developed in one field can be adapted to another field. The central object is the self-energy which includes all non-trivial aspects of the system dynamics. The focus is therefore on microscopic processes starting from elementary principles for classical gases and the complementary picture of a single quantum particle in a random potential. This provides an intuitive picture of the interaction of a particle with the medium formed by other particles, on which the Green's function is built on.




Strong Interaction


Book Description

This book brings the body and its passions back into a new theory of social interaction and social order. Building on innovative conceptions of order, change, and organization, Thomas Spence Smith dramatically expands the definition of human interactions that hold societies together. Here he examines the "strong interactions," such as love relationships, attachments, and addictive behaviors, that are inherently unstable—but are integral parts of any social order. Blending physiology and psychology with historical examples of social change and a sophisticated new model of social systems, this book contributes to our understanding how societies are possible.




Thermal Relaxation for Particle Systems in Interaction with Several Bosonic Heat Reservoirs


Book Description

The present publication is concerned with the study of thermodynamic properties of a quantum mechanical system composed of a small particle system (such as a spin chain) and several quantized massless boson fields (as photon gasses or phonon fields) at positive temperature. As the text at hand is a contribution to the area of mathematical physics it unites mathematical concepts of the thermodynamics of a quantum system with the mathematically rigorous treatment of problems in positive temperature quantum physics. The dissertation character of this publication is reflected by the fact that recent research work of the author is displayed along with a review of established results in the field of statistical quantum mechanics. An extended introductory part serves as thorough familiarization of non-experts with the field of studies. The required technical tools for the mathematical treatment of the system under consideration are carefully compiled apart from the main text.




Collective Diffusion on Surfaces: Correlation Effects and Adatom Interactions


Book Description

As materials research focuses into finding ways to control the growth of atomic scale structures, there is correspondingly increasing emphasis on to the problem of surface diffusion. Clearly surface diffusion is the key process, which determines how atoms move on the surface. Controlling this motion can lead to the easy fabrication of well-controlled nanostructures broadening the present possibilities in nanotechnology. The paradigm of surface diffusion has outgrown its standard textbook description as a random walk on a rigid substrate. In real systems for more complex situations are encountered: interacting atoms are commonly present on the surface with their motions highly correlated, different phases form on the surface with different dynamics, large concentration gradients drive the system far away from the linear response regime, rich metastable structures form as a result of balanced interplay between different kinetic processes, substrate relaxation can change the energy landscape and the diffusion barriers, etc. The motivation behind this ARW was to bring together the international community working on these problems. We felt that the large number of researchers, new results, and well-formulated open questions in this area require some form of integration in a single forum. The ARW and the upcoming proceedings book with papers by the majority of the participants has provided this forum. The meeting was not planned as a continuation of the earlier NATO ASI in Rhodes in 1996, although several people have participated in both meetings.




Interacting Systems Far from Equilibrium


Book Description

This text presents an up-to-date formalism of non-equilibrium Green's functions covering different applications ranging from solid state physics, plasma physics, cold atoms in optical lattices up to relativistic transport and heavy ion collisions.




Many-Particle Physics


Book Description

The first, second, and third editions of this book seem to occur at ten year intervals. The intent is to keep the book up-to-date. Many-body theory is a field which continually evolves in time. Journals only publish new results, conferences only invite speakers to report new phenomena, and agencies only fund scientists to do new physics. Today's physics is old hat by tomorrow. Students want to learn new material, and textbooks must be modified to keep up with the times. The early chapters in this book teach the techniques of many-body theory. They are largely unchanged in format. The later chapters apply the techniques to specific problems. The third edition increases the number of applications. New sections have been added, while old sections have been modified to include recent applications. The previous editions were set in type using pre-computer technology. No computer file existed of the prior editions. The publisher scanned the second edition and gave me a disk with the contents. This scan recorded the words accurately and scrambled the equations into unintelligible form. So I retyped the equations using LaTeX. Although tedious, it allowed me to correct the infinite numbers of typographical errors in the previous edition. The earlier typesetting methods did not permit such corrections. The entire book was edited sentence-by sentence. Most old sections of the book were shortened by editing sentences and paragraphs.




Thermodynamics and Kinetics of Water-Rock Interaction


Book Description

Volume 70 of Reviews in Mineralogy and Geochemistry represents an extensive review of the material presented by the invited speakers at a short course on Thermodynamics and Kinetics of Water-Rock Interaction held prior to the 19th annual V. M. Goldschmidt Conference in Davos, Switzerland (June 19-21, 2009). Contents: Thermodynamic Databases for Water-Rock Interaction Thermodynamics of Solid Solution-Aqueous Solution Systems Mineral Replacement Reactions Thermodynamic Concepts in Modeling Sorption at the Mineral-Water Interface Surface Complexation Modeling: Mineral Fluid Equilbria at the Molecular Scale The Link Between Mineral Dissolution/Precipitation Kinetics and Solution Chemistry Organics in Water-Rock Interactions Mineral Precipitation Kinetics Towards an Integrated Model of Weathering, Climate, and Biospheric Processes Approaches to Modeling Weathered Regolith Fluid-Rock Interaction: A Reactive Transport Approach Geochemical Modeling of Reaction Paths and Geochemical Reaction Networks




From Particle Systems to Partial Differential Equations


Book Description

"This book addresses mathematical problems motivated by various applications in physics, engineering, chemistry and biology. It gathers the lecture notes from the mini-course presented by Jean-Christophe Mourrat on the construction of the various stochastic “basic” terms involved in the formulation of the dynamic Ö4 theory in three space dimensions, as well as selected contributions presented at the fourth meeting on Particle Systems and PDEs, which was held at the University of Minho’s Centre of Mathematics in December 2015. The purpose of the conference was to bring together prominent researchers working in the fields of particle systems and partial differential equations, offering them a forum to present their recent results and discuss their topics of expertise. The meeting was also intended to present to a vast and varied public, including young researchers, the area of interacting particle systems, its underlying motivation, and its relation to partial differential equations. The book will be of great interest to probabilists, analysts, and all mathematicians whose work focuses on topics in mathematical physics, stochastic processes and differential equations in general, as well as physicists working in statistical mechanics and kinetic theory.”




Multiple Parton Interactions At The Lhc


Book Description

Many high-energy collider experiments (including the current Large Hadron Collider at CERN) involve the collision of hadrons. Hadrons are composite particles consisting of partons (quarks and gluons), and this means that in any hadron-hadron collision there will typically be multiple collisions of the constituents — i.e. multiple parton interactions (MPI). Understanding the nature of the MPI is important in terms of searching for new physics in the products of the scatters, and also in its own right to gain a greater understanding of hadron structure. This book aims at providing a pedagogical introduction and a comprehensive review of different research lines linked by an involvement of MPI phenomena. It is written by pioneers as well as young leading scientists, and reviews both experimental findings and theoretical developments, discussing also the remaining open issues.




Bimodal Oxidation


Book Description

This book is devoted to the problems of oxidation chemical reactions and addresses bimodal reaction sequences. Chemical reactions of oxidation, occurring under certain conditions and in multicomponent systems are complex processes. The process of the oxidation essentially changes in the presence and contact of the solid substances with reactants. The role of solid substances and the appearance of this phenomenon in oxidation reaction are discussed. The reader will understand the "driving forces" of this phenomenon and apply it in practice. Written for chemists, physicists, biologists and engineers working in the domain of oxidation reactions. Key Selling Features: Covers the historical background, modern state of the art, and perspectives in investigations of the coupling between heterogeneous and homogeneous reactions Discusses the feasible pathways of the coupling of heterogeneous and homogeneous reactions in oxidation in man-made and natural chemical systems Addresses the abundance, peculiarities and mechanisms of the bimodal reaction sequences in oxidation with dioxygen in recent decades Discusses the existence of the bimodal reaction sequences in chemical systems investigations in atmospheric chemistry and heterogeneous photocatalysis Presented in a simple concise style, accessible for both specialists and non-specialists