Thermo-fluid Dynamics of Two-Phase Flow


Book Description

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.




Thermo-Fluid Dynamics of Two-Phase Flow


Book Description

Thermo-fluid Dynamics of Two-Phase Flow, Second Edition is focused on the fundamental physics of two-phase flow. The authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to: Nuclear reactor transient and accident analysis; Energy systems; Power generation systems; Chemical reactors and process systems; Space propulsion; Transport processes. This edition features updates on two-phase flow formulation and constitutive equations and CFD simulation codes such as FLUENT and CFX, new coverage of the lift force model, which is of particular significance for those working in the field of computational fluid dynamics, new equations and coverage of 1 dimensional drift flux models and a new chapter on porous media formulation.




Gas-liquid Reactions


Book Description




Gasdynamic Aspects of Two-Phase Flow


Book Description

Here, the author, a researcher of outstanding experience in this field, summarizes and combines the recent results and findings on advanced two-phase flow modeling and numerical methods otherwise dispersed in various journals, while also providing explanations for numerical and modeling techniques previously not covered by other books. The resulting systematic and comprehensive monograph is unrivalled in its kind, serving as a reference for both researchers and engineers working in engineering as well as in environmental science.




Two-Phase Flow, Boiling, and Condensation


Book Description

This text is an introduction to gas-liquid two-phase flow, boiling and condensation for graduate students, professionals, and researchers in mechanical, nuclear, and chemical engineering. The book provides a balanced coverage of two-phase flow and phase change fundamentals, well-established art and science dealing with conventional systems, and the rapidly developing areas of microchannel flow and heat transfer. It is based on the author's more than 15 years of teaching experience. Instructors teaching multiphase flow have had to rely on a multitude of books and reference materials. This book remedies that problem by covering all the topics that are essential for a graduate first course. Among the important areas that are discussed in the book, and are not adequately covered by virtually all the available textbooks, are: two-phase flow model conservation equations and their numerical solution; condensation with and without noncondensables; and two-phase flow, boiling, and condensation in mini and microchannels.




Combustion Theory


Book Description

Combustion Theory delves deeper into the science of combustion than most other texts and gives insight into combustions from a molecular and a continuum point of view. The book presents derivations of the basic equations of combustion theory and contains appendices on the background of subjects of thermodynamics, chemical kinetics, fluid dynamics, and transport processes. Diffusion flames, reactions in flows with negligible transport and the theory of pre-mixed flames are treated, as are detonation phenomena, the combustion of solid propellents, and ignition, extinction, and flamibility pehnomena.




Interfacial Transport Phenomena


Book Description

Transport phenomena is used here to descril>e momentum, energy, mass, and entropy transfer (Bird et al. 1960, 1980). It includes thermodynamies, a special case of which is thermostatics. Interfacial transport phenomena refers to momentum, energy , mass, and entropy transfer within the immediate neighborhood of a phase interface, including the thermodynamies of the interface. In terms of qualitative physical observations, this is a very old field. Pliny the EIder (Gaius Plinius Secundus, 23-79 A.D.; Pliny 1938) described divers who released small quantities of oil from their mouths, in order to damp capillary ripples on the ocean surface and in this way provide more uniform lighting for their work. Similar stories were retold by Benjamin Franklin, who conducted experiments of his own in England (V an Doren 1938). In terms of analysis, this is a generally young field. Surface thermostatics developed relatively early, starting with Gibbs (1948) and continuing with important contributions by many others (see Chapter 5).




Gasdynamic Aspects of Two-Phase Flow


Book Description

Here, the author, a researcher of outstanding experience in this field, summarizes and combines the recent results and findings on advanced two-phase flow modeling and numerical methods otherwise dispersed in various journals, while also providing explanations for numerical and modeling techniques previously not covered by other books. The resulting systematic and comprehensive monograph is unrivalled in its kind, serving as a reference for both researchers and engineers working in engineering as well as in environmental science.




Mathematical Modeling of Disperse Two-Phase Flows


Book Description

This book develops the theoretical foundations of disperse two-phase flows, which are characterized by the existence of bubbles, droplets or solid particles finely dispersed in a carrier fluid, which can be a liquid or a gas. Chapters clarify many difficult subjects, including modeling of the interfacial area concentration. Basic knowledge of the subjects treated in this book is essential to practitioners of Computational Fluid Dynamics for two-phase flows in a variety of industrial and environmental settings. The author provides a complete derivation of the basic equations, followed by more advanced subjects like turbulence equations for the two phases (continuous and disperse) and multi-size particulate flow modeling. As well as theoretical material, readers will discover chapters concerned with closure relations and numerical issues. Many physical models are presented, covering key subjects including heat and mass transfers between phases, interfacial forces and fluid particles coalescence and breakup, amongst others. This book is highly suitable for students in the subject area, but may also be a useful reference text for more advanced scientists and engineers.




Fundamentals of Multiphase Heat Transfer and Flow


Book Description

This textbook presents a modern treatment of fundamentals of heat and mass transfer in the context of all types of multiphase flows with possibility of phase-changes among solid, liquid and vapor. It serves equally as a textbook for undergraduate senior and graduate students in a wide variety of engineering disciplines including mechanical engineering, chemical engineering, material science and engineering, nuclear engineering, biomedical engineering, and environmental engineering. Multiphase Heat Transfer and Flow can also be used to teach contemporary and novel applications of heat and mass transfer. Concepts are reinforced with numerous examples and end-of-chapter problems. A solutions manual and PowerPoint presentation are available to instructors. While the book is designed for students, it is also very useful for practicing engineers working in technical areas related to both macro- and micro-scale systems that emphasize multiphase, multicomponent, and non-conventional geometries with coupled heat and mass transfer and phase change, with the possibility of full numerical simulation.