Multiphase Flow Dynamics 2


Book Description

Multi-phase flows are part of our natural environment such as tornadoes, typhoons, air and water pollution and volcanic activities as well as part of industrial technology such as power plants, combustion engines, propulsion systems, or chemical and biological industry. The industrial use of multi-phase systems requires analytical and numerical strategies for predicting their behavior. In its third extended edition this book contains theory, methods and practical experience for describing complex transient multi-phase processes in arbitrary geometrical configurations. This book provides a systematic presentation of the theory and practice of numerical multi-phase fluid dynamics. In the present second volume the mechanical and thermal interactions in multiphase dynamics are provided. This third edition includes various updates, extensions, improvements and corrections.




Computational Methods in Multiphase Flow III


Book Description

A common feature of multiphase flows is that a dispersed or discontinuous phase is being carried by a continuous phase, for example water drops in gas flow, solid particles in water flow, or gas bubbles in liquid flow. The overall behavior of the flow is shaped largely by the interaction between the discontinuous elements--drops, particles, bubbles




Thermo-fluid Dynamics of Two-Phase Flow


Book Description

This book has been written for graduate students, scientists and engineers who need in-depth theoretical foundations to solve two-phase problems in various technological systems. Based on extensive research experiences focused on the fundamental physics of two-phase flow, the authors present the detailed theoretical foundation of multi-phase flow thermo-fluid dynamics as they apply to a variety of scenarios, including nuclear reactor transient and accident analysis, energy systems, power generation systems and even space propulsion.




Mass and Heat Transfer


Book Description

This text allows instructors to teach a course on heat and mass transfer that will equip students with the pragmatic, applied skills required by the modern chemical industry. This new approach is a combined presentation of heat and mass transfer, maintaining mathematical rigor while keeping mathematical analysis to a minimum. This allows students to develop a strong conceptual understanding, and teaches them how to become proficient in engineering analysis of mass contactors and heat exchangers and the transport theory used as a basis for determining how critical coefficients depend upon physical properties and fluid motions. Students will first study the engineering analysis and design of equipment important in experiments and for the processing of material at the commercial scale. The second part of the book presents the fundamentals of transport phenomena relevant to these applications. A complete teaching package includes a comprehensive instructor's guide, exercises, case studies, and project assignments.




Computational Fluid Dynamics


Book Description

This book is the result of a careful selection of contributors in the field of CFD. It is divided into three sections according to the purpose and approaches used in the development of the contributions. The first section describes the "high-performance computing" (HPC) tools and their impact on CFD modeling. The second section is dedicated to "CFD models for local and large-scale industrial phenomena." Two types of approaches are basically contained here: one concerns the adaptation from global to local scale, - e.g., the applications of CFD to study the climate changes and the adaptations to local scale. The second approach, very challenging, is the multiscale analysis. The third section is devoted to "CFD in numerical modeling approach for experimental cases." Its chapters emphasize on the numerical approach of the mathematical models associated to few experimental (industrial) cases. Here, the impact and the importance of the mathematical modeling in CFD are focused on. It is expected that the collection of these chapters will enrich the state of the art in the CFD domain and its applications in a lot of fields. This collection proves that CFD is a highly interdisciplinary research area, which lies at the interface of physics, engineering, applied mathematics, and computer science.




Comprehensive Organic Synthesis


Book Description

The second edition of Comprehensive Organic Synthesis—winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers—builds upon the highly respected first edition in drawing together the new common themes that underlie the many disparate areas of organic chemistry. These themes support effective and efficient synthetic strategies, thus providing a comprehensive overview of this important discipline. Fully revised and updated, this new set forms an essential reference work for all those seeking information on the solution of synthetic problems, whether they are experienced practitioners or chemists whose major interests lie outside organic synthesis. In addition, synthetic chemists requiring the essential facts in new areas, as well as students completely new to the field, will find Comprehensive Organic Synthesis, Second Edition, Nine Volume Set an invaluable source, providing an authoritative overview of core concepts. Winner of the 2015 PROSE Award for Multivolume Reference/Science from the Association of American Publishers Contains more than170 articles across nine volumes, including detailed analysis of core topics such as bonds, oxidation, and reduction Includes more than10,000 schemes and images Fully revised and updated; important growth areas—including combinatorial chemistry, new technological, industrial, and green chemistry developments—are covered extensively







Multiphase Particulate Systems in Turbulent Flows


Book Description

Multiphase Particulate Systems in Turbulent Flows: Fluid-Liquid and Solid-Liquid Dispersions provides methods necessary to analyze complex particulate systems and related phenomena including physical, chemical and mathematical description of fundamental processes influencing crystal size and shape, suspension rheology, interfacial area of drops and bubbles in extractors and bubble columns. Examples of mathematical model formulation for different processes taking place in such systems is shown. Discussing connections between turbulent mixing mechanisms and precipitation, it discusses influence of fine-scale structure of turbulence, including its intermittent character, on breakage of drops, bubbles, cells, plant cell aggregates. An important aspect of the mathematical modeling presented in the book is multi-fractal, taking into account the influence of internal intermittency on different phenomena. Key Features Provides detailed descriptions of dispersion processes in turbulent flow, interactions between dispersed entities, and continuous phase in a single volume Includes simulation models and validation experiments for liquid-liquid, gas-liquid, and solid-liquid dispersions in turbulent flows Helps reader learn formulation of mathematical models of breakage or aggregation processes using multifractal theory Explains how to solve different forms of population balance equations Presents a combination of theoretical and engineering approaches to particulate systems along with discussion of related diversity, with exercises and case studies