Interfacial Electrokinetics and Electrophoresis


Book Description

Interfacial Electtrokinetics and Electrophoresis presents theoretical models and experimental procedures for the analysis of electrokinetic phenomena. It discusses the physics and chemistry of solid/liquid, liquid/liquid, and gas/liquid interfaces, and offers applications for the printing, environmental, pharmaceutical and biomedical industries.




Interfacial Electrokinetics and Electrophoresis


Book Description

Interfacial Electtrokinetics and Electrophoresis presents theoretical models and experimental procedures for the analysis of electrokinetic phenomena. It discusses the physics and chemistry of solid/liquid, liquid/liquid, and gas/liquid interfaces, and offers applications for the printing, environmental, pharmaceutical and biomedical industries.




Molecular and Colloidal Electro-optics


Book Description

Molecular and Colloidal Electro-Optics presents cohesive coverage from internationally recognized experts on new approaches and developments in both theoretical and experimental areas of electro-optic science. It comprises a well-integrated yet multi-disciplinary treatment of fundamental principles, strategies, and applications of electro-op




Theory of Colloid and Interfacial Electric Phenomena


Book Description

Theory of Colloid and Interfacial Electric Phenomena is written for scientists, engineers, and graduate students who want to study the fundamentals and current developments in colloid and interfacial electric phenomena, and their relation to stability of suspensions of colloidal particles and nanoparticles in the field of nanoscience and nanotechnology. The primary purpose of this book is to help understand how the knowledge on the structure of electrical double layers, double layer interactions, and electrophoresis of charged particles will be important to understand various interfacial electric phenomena and to improves the reader's skill and save time in the study of interfacial electric phenomena. Also providing theoretical background and interpretation of electrokinetic phenomena and many approximate analytic formulas describing various colloid and interfacial electric phenomena, which will be useful and helpful to understand these phenomena analyse experimental data. Showing the fundamentals and developments in the field First book to describe electrokinetics of soft particles Providing theoretical background and interpretation of electrokinetic phenomena







Electrokinetic Microfluidics and Nanofluidics


Book Description

This book reviews the latest advancement of microfluidics and nanofluidics with a focus on electrokinetic phenomena in microfluidics and nanofluidics. It provides fundamental understanding of several new interfacial electrokinetic phenomena in microfluidics and nanofluidics. Chapter 1 gives a brief review of the fundamentals of interfacial electrokinetics. Chapter 2 shows induced charge electrokinetic transport phenomena. Chapter 3 presents the new advancement in DC dielectrophoresis. Chapter 4 introduces a novel nanofabrication method and the systematic studies of electrokinetic nanofluidics. Chapter 5 presents electrokinetic phenomena associated with Janus particles and Janus droplets. Chapter 6 introduces a new direction of electrokinetic nanofluidics: nanofluidic iontronics. Chapter 7 discusses an important differential resistive pulse sensor in microfluidics and nanofluidics.




Electrical Phenomena at Interfaces and Biointerfaces


Book Description

This book bridges three different fields: nanoscience, bioscience, and environmental sciences. It starts with fundamental electrostatics at interfaces and includes a detailed description of fundamental theories dealing with electrical double layers around a charged particle, electrokinetics, and electrical double layer interaction between charged particles. The stated fundamentals are provided as the underpinnings of sections two, three, and four, which address electrokinetic phenomena that occur in nanoscience, bioscience, and environmental science. Applications in nanomaterials, fuel cells, electronic materials, biomaterials, stems cells, microbiology, water purificiaion, and humic substances are discussed.




Electrokinetics and Electrohydrodynamics in Microsystems


Book Description

Among the most promising techniques to handle small objects at the micrometer scale are those that employ electrical forces, which have the advantages of voltage-based control and dominance over other forces. The book provides a state-of-the-art knowledge on both theoretical and applied aspects of the electrical manipulation of colloidal particles and fluids in microsystems and covers the following topics: dielectrophoresis, electrowetting, electrohydrodynamics in microsystems, and electrokinetics of fluids and particles. The book is addressed to doctoral students, young or senior researchers, chemical engineers and/or biotechnologists with an interest in microfluidics, lab-on-chip or MEMS.




Electrokinetic and Colloid Transport Phenomena


Book Description

A new, definitive perspective of electrokinetic and colloid transport processes Responding to renewed interest in the subject of electrokinetics, Electrokinetic and Colloid Transport Phenomena is a timely overview of the latest research and applications in this field for both the beginner and the professional. An outgrowth of an earlier text (by coauthor Jacob Masliyah), this self-contained reference provides an up-to-date summary of the literature on electrokinetic and colloid transport phenomena as well as direct pedagogical insight into the development of the subject over the past several decades. A distinct departure from standard colloid science monographs, Electrokinetic and Colloid Transport Phenomena presents the most salient features of the theory in a simple and direct manner, allowing the book to serve as a stepping-stone for further learning and study. In addition, the book uniquely discusses numerical simulation of electrokinetic problems and demonstrates the use of commercial finite element software for solving these multiphysics problems. Among the topics covered are: * Mathematical preliminaries * Colloidal systems * Electrostatics and application of electrostatics * Electric double layer * Electroosmosis and streaming potential * Electrophoresis and sedimentation potential * London-Van der Waals forces and the DLVO theory * Coagulation and colloid deposition * Numerical simulation of electrokinetic phenomena * Applications of electrokinetic phenomena Because this thorough reference does not require advanced mathematical knowledge, it enables a graduate or a senior undergraduate student approaching the subject for the first time to easily interpret the theories. On the other hand, the application of relevant mathematical principles and the worked examples are extremely useful to established researchers and professionals involved in a wide range of areas, including electroosmosis, streaming potential, electrophoretic separations, industrial practices involving colloids and complex fluids, environmental remediation, suspensions, and microfluidic systems.




Electrokinetics in Microfluidics


Book Description

A lab-on-a-chip device is a microscale laboratory on a credit-card sized glass or plastic chip with a network of microchannels, electrodes, sensors and electronic circuits. These labs on a chip can duplicate the specialized functions as performed by their room-sized counterparts, such as clinical diagnoses, PCR and electrophoretic separation. The advantages of these labs on a chip include significant reduction in the amounts of samples and reagents, very short reaction and analysis time, high throughput and portability. Generally, a lab-on-a-chip device must perform a number of microfluidic functions: pumping, mixing, thermal cycling/incubating, dispensing, and separating. Precise manipulation of these microfluidic processes is key to the operation and performance of labs on a chip. The objective of this book is to provide a fundamental understanding of the interfacial electrokinetic phenomena in several key microfluidic processes, and to show how these phenomena can be utilised to control the microfluidic processes. For this purpose, this book emphasises the theoretical modelling and the numerical simulation of these electrokinetic phenomena in microfluidics. However, experimental studies of the electrokinetic microfluidic processes are also highlighted in sufficient detail. - The first book which systematically reviews electrokinetic microfluidics processes for lab-on-a chip applications - Covers modelling and numerical simulation of the electrokinetic microfluidics processes - Providing information on experimental studies and details of experimental techniques, which are essential for those who are new to this field