Interfacial Phenomena in Petroleum Recovery


Book Description

Deals with specialized but interrelated problems in oil recovery in which the effect of interfacial behaviors is the dominant factor. Describes approaches to improving the understanding of the fundamentals of displacement, with the goal of simplifying systems sufficiently to enable measurements and




Advanced Petrophysics: Dispersion, interfacial phenomena


Book Description

A practical, fast-paced approach to teaching the concepts and problems common in petroleum engineering that will appeal to a wide range of disciplines Petrophysics is the study of rock properties and their interactions with fluids, including gases, liquid hydrocarbons, and aqueous solutions. This three-volume series from distinguished University of Texas professor Dr. Ekwere J. Peters provides a basic understanding of the physical properties of permeable geologic rocks and the interactions of the various fluids with their interstitial surfaces, with special focus on the transport properties of rocks for single-phase and multiphase flow. Based on Dr. Peters's graduate course that has been taught internationally in corporations and classrooms, the series covers core topics and includes full-color CT and NMR images, graphs, and figures to illustrate practical application of the material. Topics addressed in volume 2 (chapters 5-8) include - Dispersion in porous media - Interfacial phenomena and wettability - Capillary pressure - Relative permeability Advanced Petrophysics features over 140 exercises designed to strengthen learning and extend concepts into practice. Additional information in the appendices covers dimensional analysis and a series of real-world projects that enable the student to apply the principles presented in the text to build a petrophysical model using well logs and core data from a major petroleum-producing province.




Interfacial Phenomena In Chromatography


Book Description

Interfacial Phenomena in Chromatography presents a combination of chromatographic theory, numerical simulation and experimental data. The text covers the interaction and size exclusion methods of separation, identification and characterization of substances in solution. It provides practical information and analysis on the most effective mechanisms of interfacial chromatography, along with its expanding possibilities for biomedical, industrial and environmental applications.




Interfacial Phenomena in Apolar Media


Book Description

This book gives practical, on-the-job guidance as well as detailed theoretical background on a wide range of occurrences including hydrophobic foams, adsorption of surfactants/polymers on solids from nonpolar media and lubrication. Extensive end of chapter references enumerate the most relevant and current publications on the topics discussed. Providing over 130 instructive figures, more than 100 equations and useful graphs and diagrams.




Emulsions, Foams, and Suspensions


Book Description

Until now colloid science books have either been theoretical, or focused on specific types of dispersion, or on specific applications. This then is the first book to provide an integrated introduction to the nature, formation and occurrence, stability, propagation, and uses of the most common types of colloidal dispersion in the process-related industries. The primary focus is on the applications of the principles, paying attention to practical processes and problems. This is done both as part of the treatment of the fundamentals, where appropriate, and also in the separate sections devoted to specific kinds of industries. Throughout, the treatment is integrated, with the principles of colloid and interface science common to each dispersion type presented for each major physical property class, followed by separate treatments of features unique to emulsions, foams, or suspensions. The first half of the book introduces the fundamental principles, introducing readers to suspension formation and stability, characterization, and flow properties, emphasizing practical aspects throughout. The following chapters discuss a wide range of industrial applications and examples, serving to emphasize the different methodologies that have been successfully applied. Overall, the book shows how to approach making emulsions, foams, and suspensions with different useful properties, how to propagate them, and how to prevent their formation or destabilize them if necessary. The author assumes no prior knowledge of colloid chemistry and, with its glossary of key terms, complete cross-referencing and indexing, this is a must-have for graduate and professional scientists and engineers who may encounter or use emulsions, foams, or suspensions, or combinations thereof, whether in process design, industrial production, or in related R&D fields.




Reservoir Formation Damage


Book Description

&Quot;This comprehensive single source gives you the latest findings and techniques for understanding, assessing, and mitigating reservoir formation damage. "Reservoir Formation Damages is a concise and practical reference for engineers, scientists, and operators engaged in various aspects of formation damage, including testing, evaluation, diagnosis, prediction, and mitigation."--BOOK JACKET. It is the only book in the world to draw from the key disciplines of chemistry, engineering, petrophysics, geology, and mathematical modeling to provide state-of-the-art knowledge and valuable insights into formation damage.".




Enhanced Oil Recovery


Book Description

Oil recovery efficiency can be increased by applying the enhanced oil recovery (EOR) processes, which are based on the improvement of mobility ratio, reduction of interfacial tension between oil and water, wettability alteration, reduction of oil viscosity, formation of oil banks, and so forth. This book describes the different EOR methods and their mechanisms, which are traditionally used after conventional primary and secondary processes. The present scenario of different EOR processes, at both the field application stage and research stage, is also covered. Further, it discusses some of the recent advances in EOR processes such as low-salinity water flooding, the application of nanotechnology in EOR, microbial EOR, carbonated water injection, etc. Features: Comprehensive coverage of all enhanced oil recovery (EOR) methods Discussion of reservoir rock and fluid characteristics Illustration of steps in design and field implementation as well as the screening criteria for process selection Coverage of novel topics of nanotechnology in EOR and hybrid EOR method and low-salinity waterfloods Emphasis on recent technologies, feasibility, and implementation of hybrid technologies This book is aimed at graduate students, professionals, researchers, chemists, and personnel involved in petroleum engineering, chemical engineering, surfactant manufacturing, polymer manufacturing, oil/gas service companies, and carbon capture and utilization.




Interfacial Phenomena


Book Description

Interfacial Phenomena explores the more primary properties of different liquid interfaces. This book is divided into eight chapters, where Chapter 1 establishes the basic concepts of the physics of surfaces, including the properties of matter in the surface layer. Chapters 2 and 3 further discuss the concepts of electrostatic and electrokinetic phenomena, respectively. Other areas discussed in the later chapters include adsorption at liquid interfaces; properties of monolayers; reactions at liquid interfaces; and mass transfer across interfaces. Chapter 8 discusses the more relevant aspects of disperse systems and adhesion as related to the interfacial properties discussed in the previous chapters. The text is a valuable source of information to students and researchers in the fields of chemistry, biology, and chemical engineering and can also be used for industrial and academic laboratories.




Interfacial Phenomena


Book Description

Since the publication of the first edition of Interfacial Phenomena, the interest in interfaces and surfactants has multiplied, along with their applications. Experimental and theoretical advances have provided scientists with greater insight into the structure, properties, and behavior of surfactant and colloid systems. Emphasizing equil




Oilfield Chemistry and its Environmental Impact


Book Description

Consolidates the many different chemistries being employed to provide environmentally acceptable products through the upstream oil and gas industry This book discusses the development and application of green chemistry in the oil and gas exploration and production industry over the last 25 years — bringing together the various chemistries that are utilised for creating suitable environmental products. Written by a highly respected consultant to the oil and gas industry — it introduces readers to the principles and development of green chemistry in general, and the regulatory framework specific to the oil and gas sector in the North Sea area and elsewhere in the world. It also explores economic drivers pertaining to the application of green chemistry in the sector. Topics covered in Oilfield Chemistry and its Environmental Impact include polymer chemistry, surfactants and amphiphiles, phosphorus chemistry, inorganic salts, low molecular weight organics, silicon chemistry and green solvents. It also looks at sustainability in an extractive industry, examining the approaches used and the other methodologies that could be applied in the development of better chemistries, along with discussions about where the application of green chemistry is leading in this industry sector. Provides the reader with a ready source of reference when considering what chemistries are appropriate for application to oilfield problems and looking for green chemistry solutions Brings together the pertinent regulations which workers in the field will find useful, alongside the chemistries which meet the regulatory requirements Written by a well-known specialist with a combined knowledge of chemistry, manufacturing procedures and environmental issues Oilfield Chemistry and its Environmental Impact is an excellent book for oil and gas industry professionals as well as scientists, academic researchers, students and policy makers.