Internal Gravity Waves


Book Description

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.




Internal Gravity Waves


Book Description

The first comprehensive treatment of the theory for small and large amplitude internal gravity waves, with illustrative examples and exercises.




Internal Gravity Waves


Book Description

The study of internal gravity waves provides many challenges: they move along interfaces as well as in fully three-dimensional space, at relatively fast temporal and small spatial scales, making them difficult to observe and resolve in weather and climate models. Solving the equations describing their evolution poses various mathematical challenges associated with singular boundary value problems and large amplitude dynamics. This book provides the first comprehensive treatment of the theory for small and large amplitude internal gravity waves. Over 120 schematics, numerical simulations and laboratory images illustrate the theory and mathematical techniques, and 130 exercises enable the reader to apply their understanding of the theory. This is an invaluable single resource for academic researchers and graduate students studying the motion of waves within the atmosphere and ocean, and also mathematicians, physicists and engineers interested in the properties of propagating, growing and breaking waves.




Nonlinear Water Waves


Book Description

Non-linear behaviour of water waves has recently drawn much attention of scientists and engineers in the fields of oceanography, applied mathematics, coastal engineering, ocean engineering, naval architecture, and others. The IUTAM Symposium on Non-linear Water Waves was organized with the aim of bringing together researchers who are actively studying non-linear water waves from various viewpoints. The papers contained in this book are related to the generation and deformation of non-linear water waves and the non-linear interaction between waves and bodies. That is, various types of non-linear water waves were analyzed on the basis of various well-known equations, experimental studies on breaking waves were presented, and numerical studies of calculating second-order non-linear wave-body interaction were proposed.







Fluid Waves


Book Description

This book derives the mathematical basis for the most-encountered waves in fluids in science and engineering. It gives professionals in important occupations such as maritime engineering, climate science, urban noise control, and medical diagnostics the key formulae needed for calculations. The book begins with the basis of fluid dynamics and subsequent chapters cover surface gravity waves, sound waves, internal gravity waves, waves in rotating fluids, and introduce some nonlinear wave phenomena. Basic phenomena common to all fluid waves such as refraction are detailed. Thereafter, specialized application chapters describe specific contemporary problems. All concepts are supported by narrative examples, illustrations, and problems. FEATURES • Explains the basis of wave mechanics in fluid systems. • Provides tools for the analysis of water waves, sound waves, internal gravity waves, rotating fluid waves and some nonlinear wave phenomena, together with example problems. • Includes comprehensible mathematical derivations at the expense of fewer theoretical topics. • Reviews cases describable by linear theory and cases requiring nonlinear and wave-interaction theories. This book is suitable for senior undergraduates, graduate students and researchers in Fluid Mechanics, Applied Mathematics, Meteorology, Physical Oceanography, and in Biomedical, Civil, Chemical, Environmental, Mechanical, and Maritime Engineering.




The Encyclopedia of Beaches and Coastal Environments


Book Description

This book should be of interest to geologists; biologists; environmentalists; ecologists; engineers; lecturers and students in related subjects; libraries.




Satellite Altimetry Over Oceans and Land Surfaces


Book Description

Satellite remote sensing, in particular by radar altimetry, is a crucial technique for observations of the ocean surface and of many aspects of land surfaces, and of paramount importance for climate and environmental studies. This book provides a state-of-the-art overview of the satellite altimetry techniques and related missions, and reviews the most-up-to date applications to ocean dynamics and sea level. It also discusses related space-based observations of the ocean surface and of the marine geoid, as well as applications of satellite altimetry to the cryosphere and land surface waters; operational oceanography and its applications to navigation, fishing and defense.




Waves in Fluids


Book Description

A comprehensive textbook in which the author describes the science of waves in liquids and gases. Drawing on a subject of enormous extent and variety, he provides his readers with a thorough analysis of the most important and representative types of waves including sound waves, shock waves, waterwaves of all kinds, and the so-called internal waves (inside atmospheres and oceans) due to intensity stratification. Emphasis throughout is on the most generally useful fundamental ideas of wave science, including the principles of how waves interact with flows. This standard work on one of the great subdivisions of the dynamics of fluids is lucidly written and will be invaluable to engineers, physicists, geophysicists, applied mathematicians or any research worker concerned with wave motions or fluid fllows. It is especially suitable as a textbook for courses at the final year undergraduate or graduate level.




Theoretical Fluid Dynamics


Book Description

This textbook gives an introduction to fluid dynamics based on flows for which analytical solutions exist, like individual vortices, vortex streets, vortex sheets, accretions disks, wakes, jets, cavities, shallow water waves, bores, tides, linear and non-linear free-surface waves, capillary waves, internal gravity waves and shocks. Advanced mathematical techniques ("calculus") are introduced and applied to obtain these solutions, mostly from complex function theory (Schwarz-Christoffel theorem and Wiener-Hopf technique), exterior calculus, singularity theory, asymptotic analysis, the theory of linear and nonlinear integral equations and the theory of characteristics. Many of the derivations, so far contained only in research journals, are made available here to a wider public.