The Internal Structure of Fault Zones


Book Description

Faults are primary focuses of both fluid migration and deformation in the upper crust. The recognition that faults are typically heterogeneous zones of deformed material, not simple discrete fractures, has fundamental implications for the way geoscientists predict fluid migration in fault zones, as well as leading to new concepts in understanding seismic/aseismic strain accommodation. This book captures current research into understanding the complexities of fault-zone internal structure, and their control on mechanical and fluid-flow properties of the upper crust. A wide variety of approaches are presented, from geological field studies and laboratory analyses of fault-zone and fault-rock properties to numerical fluid-flow modelling, and from seismological data analyses to coupled hydraulic and rheological modelling. The publication aims to illustrate the importance of understanding fault-zone complexity by integrating such diverse approaches, and its impact on the rheological and fluid-flow behaviour of fault zones in different contexts.




Fault Mechanics and Transport Properties of Rocks


Book Description

This festschrift, compiled from the symposium held in honor of W.F. Brace, is a timely overview of fault mechanics and transport properties of rock. State-of-the-art research is presented by internationally recognized experts, who highlight developments in this contemporary area of study subsequent to Bill Brace's pioneering work.Key Features* The strength of brittle rocks* The effects of stress and stress-induced damage on physical properties of rock* Permeability and fluid flow in rocks* The strength of rocks and tectonic processes




Rock Fractures and Fluid Flow


Book Description

Scientific understanding of fluid flow in rock fracturesâ€"a process underlying contemporary earth science problems from the search for petroleum to the controversy over nuclear waste storageâ€"has grown significantly in the past 20 years. This volume presents a comprehensive report on the state of the field, with an interdisciplinary viewpoint, case studies of fracture sites, illustrations, conclusions, and research recommendations. The book addresses these questions: How can fractures that are significant hydraulic conductors be identified, located, and characterized? How do flow and transport occur in fracture systems? How can changes in fracture systems be predicted and controlled? Among other topics, the committee provides a geomechanical understanding of fracture formation, reviews methods for detecting subsurface fractures, and looks at the use of hydraulic and tracer tests to investigate fluid flow. The volume examines the state of conceptual and mathematical modeling, and it provides a useful framework for understanding the complexity of fracture changes that occur during fluid pumping and other engineering practices. With a practical and multidisciplinary outlook, this volume will be welcomed by geologists, petroleum geologists, geoengineers, geophysicists, hydrologists, researchers, educators and students in these fields, and public officials involved in geological projects.




Faulting, Fault Sealing and Fluid Flow in Hydrocarbon Reservoirs


Book Description

Annotation "Compared with many other areas of the petroleum geosciences, studies of the structural controls on fluid flow in hydrocarbon reservoirs are in their infancy. As hydrocarbon reserves have become depleted and the oil industry has become more competitive, the need to cut costs by optimizing production and predicting the occurrence of subtle traps has highlighted the importance of information on the way in which faults and fractures affect fluid flow. Structural geologists are now having to provide answers to questions such as: Are hydrocarbons likely to have migrated into (or out of) the trap? What is the likely height of hydrocarbons that a fault can support? Is it likely that compartments which have not been produced exist within a field and will therefore require further drilling?" "This volume aims to find answers to these questions."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved.




Living on an Active Earth


Book Description

The destructive force of earthquakes has stimulated human inquiry since ancient times, yet the scientific study of earthquakes is a surprisingly recent endeavor. Instrumental recordings of earthquakes were not made until the second half of the 19th century, and the primary mechanism for generating seismic waves was not identified until the beginning of the 20th century. From this recent start, a range of laboratory, field, and theoretical investigations have developed into a vigorous new discipline: the science of earthquakes. As a basic science, it provides a comprehensive understanding of earthquake behavior and related phenomena in the Earth and other terrestrial planets. As an applied science, it provides a knowledge base of great practical value for a global society whose infrastructure is built on the Earth's active crust. This book describes the growth and origins of earthquake science and identifies research and data collection efforts that will strengthen the scientific and social contributions of this exciting new discipline.










Mechanics, Structure and Evolution of Fault Zones


Book Description

Considerable progress has been made recently in quantifying geometrical and physical properties of fault surfaces and adjacent fractured and granulated damage zones in active faulting environments. There has also been significant progress in developing rheologies and computational frameworks that can model the dynamics of fault zone processes. This volume provides state-of-the-art theoretical and observational results on the mechanics, structure and evolution of fault zones. Subjects discussed include damage rheologies, development of instabilities, fracture and friction, dynamic rupture experiments, and analyses of earthquake and fault zone data.




Tectonic Faults


Book Description

Scientists examine tectonic faulting on all scales--from seismic fault slip to the formation of mountain ranges--and discuss its connection to a wide range of global phenomena, including long-term climate change and evolution. Tectonic faults are sites of localized motion, both at the Earth's surface and within its dynamic interior. Faulting is directly linked to a wide range of global phenomena, including long-term climate change and the evolution of hominids, the opening and closure of oceans, and the rise and fall of mountain ranges. In Tectonic Faults, scientists from a variety of disciplines explore the connections between faulting and the processes of the Earth's atmosphere, surface, and interior. They consider faults and faulting from many different vantage points--including those of surface analysts, geochemists, material scientists, and physicists--and in all scales, from seismic fault slip to moving tectonic plates. They address basic issues, including the imaging of faults from Earth's surface to the base of the lithosphere and deeper, the structure and rheology of fault rocks, and the role of fluids and melt on the physical properties of deforming rock. They suggest strategies for understanding the interaction of faulting with topography and climate, predicting fault behavior, and interpreting the impacts on the rock record and the human environment. Using an Earth Systems approach, Tectonic Faults provides a new understanding of feedback between faulting and Earth's atmospheric, surface, and interior processes, and recommends new approaches for advancing knowledge of tectonic faults as an integral part of our dynamic planet.




Integrated Fault Seal Analysis


Book Description

Faults commonly trap fluids such as hydrocarbons and water and therefore are of economic significance. During hydrocarbon field development, smaller faults can provide baffles and/or conduits to flow. There are relatively simple, well established workflows to carry out a fault seal analysis for siliciclastic rocks based primarily on clay content. There are, however, outstanding challenges related to other rock types, to calibrating fault seal models (with static and dynamic data) and to handling uncertainty. The variety of studies presented here demonstrate the types of data required and workflows followed in today’s environment in order to understand the uncertainties, risks and upsides associated with fault-related fluid flow. These studies span all parts of the hydrocarbon value chain from exploration to production but are also of relevance for other industries such as radioactive waste and CO2 containment.