International Benchmarking of U.S. Chemical Engineering Research Competitiveness


Book Description

More than $400 billion worth of products rely on innovations in chemistry. Chemical engineering, as an academic discipline and profession, has enabled this achievement. In response to growing concerns about the future of the discipline, International Benchmarking of U.S. Chemical Engineering Research Competitiveness gauges the standing of the U.S. chemical engineering enterprise in the world. This in-depth benchmarking analysis is based on measures including numbers of published papers, citations, trends in degrees conferred, patent productivity, and awards. The book concludes that the United States is presently, and is expected to remain, among the world's leaders in all subareas of chemical engineering research. However, U.S. leadership in some classical and emerging subareas will be strongly challenged. This critical analysis will be of interest to practicing chemical engineers, professors and students in the discipline, economists, policy makers, major research university administrators, and executives in industries dependent upon innovations in chemistry.




Benchmarking the Competitiveness of the United States in Mechanical Engineering Basic Research


Book Description

Mechanical engineering is critical to the design, manufacture, and operation of small and large mechanical systems throughout the U.S. economy. This book highlights the main findings of a benchmarking exercise to rate the standing of U.S. mechanical engineering basic research relative to other regions or countries. The book includes key factors that influence U.S. performance in mechanical engineering research, and near- and longer-term projections of research leadership. U.S. leadership in mechanical engineering basic research overall will continue to be strong. Contributions of U.S. mechanical engineers to journal articles will increase, but so will the contributions from other growing economies such as China and India. At the same time, the supply of U.S. mechanical engineers is in jeopardy, because of declines in the number of U.S. citizens obtaining advanced degrees and uncertain prospects for continuing to attract foreign students. U.S. funding of mechanical engineering basic research and infrastructure will remain level, with strong leadership in emerging areas.




The Future of U.S. Chemistry Research


Book Description

Chemistry plays a key role in conquering diseases, solving energy problems, addressing environmental problems, providing the discoveries that lead to new industries, and developing new materials and technologies for national defense and homeland security. However, the field is currently facing a crucial time of change and is struggling to position itself to meet the needs of the future as it expands beyond its traditional core toward areas related to biology, materials science, and nanotechnology. At the request of the National Science Foundation and the U.S. Department of Energy, the National Research Council conducted an in-depth benchmarking analysis to gauge the current standing of the U.S. chemistry field in the world. The Future of U.S. Chemistry Research: Benchmarks and Challenges highlights the main findings of the benchmarking exercise.




International Assessment of Research and Development in Catalysis by Nanostructured Materials


Book Description

Catalyst technologies account for over $1 trillion of revenue in the U.S. economy alone. The applications range from medicines and alternative energy fuel cell technologies to the development of new and innovative clothing fibers. In this book, a World Technology Evaluation Center (WTEC) panel of eight experts in the field assesses the current state of research and development in catalysis by nanostructured materials, its sources of funding, and discusses the state of the field with respect to productivity and leadership in various nations around the world. In addition to showing the numerous and highly advantageous practical applications of the field, the panel concludes that Western Europe is currently the most productive region, followed closely by the United States. Still, the research and development output of the People's Republic of China has recently surpassed that of Japan and is now poised to surpass that of the U.S. as well. As such, this assessment is a timely review of the field's progress, taking into account the increasing contributions from Asia, and will be essential reading for professionals, whether they are seeking an in-depth summary of the state of the art or a broad view of trends affecting the discipline.










Advancing the Competitiveness and Efficiency of the U.S. Construction Industry


Book Description

Construction productivity-how well, how quickly, and at what cost buildings and infrastructure can be constructed-directly affects prices for homes and consumer goods and the robustness of the national economy. Industry analysts differ on whether construction industry productivity is improving or declining. Still, advances in available and emerging technologies offer significant opportunities to improve construction efficiency substantially in the 21st century and to help meet other national challenges, such as environmental sustainability. Advancing the Competitiveness and Efficiency of the U.S. Construction Industry identifies five interrelated activities that could significantly improve the quality, timeliness, cost-effectiveness, and sustainability of construction projects. These activities include widespread deployment and use of interoperable technology applications; improved job-site efficiency through more effective interfacing of people, processes, materials, equipment, and information; greater use of prefabrication, preassembly, modularization, and off-site fabrication techniques and processes; innovative, widespread use of demonstration installations; and effective performance measurement to drive efficiency and support innovation. The book recommends that the National Institute of Standards and Technology work with industry leaders to develop a collaborative strategy to fully implement and deploy the five activities




Review and Assessment of Developmental Issues Concerning the Metal Parts Treater Design for the Blue Grass Chemical Agent Destruction Pilot Plant


Book Description

The United States is in the process of destroying its chemical weapons stockpile. In 1996, Congress mandated that DOD demonstrate and select alternative methods to incineration at the Blue Grass and Pueblo sites. The Assembled Chemical Weapons Alternatives (ACWA) program was setup to oversee the development of these methods, and pilot plants were established at both sites. One of the new technologies being developed at the Blue Grass pilot plant are metal parts treaters (MPTs) to be used for the empty metal munitions cases. During recent testing, some issues arose with the MPTs that caused the ACWA to request a review by the NRC to investigate and determine their causes. This book presents a discussion of the MPT system; an assessment of the MPT testing activities; an analysis of thermal testing, modeling, and predicted throughput of the MPT; and an examination of the applicability of munitions treatment units under development at Pueblo for the Blue Grass pilot plant.




Catalysis for Energy


Book Description

This book presents an in-depth analysis of the investment in catalysis basic research by the U.S. Department of Energy (DOE) Office of Basic Energy Sciences (BES) Catalysis Science Program. Catalysis is essential to our ability to control chemical reactions, including those involved in energy transformations. Catalysis is therefore integral to current and future energy solutions, such as the environmentally benign use of hydrocarbons and new energy sources (such as biomass and solar energy) and new efficient energy systems (such as fuel cells). Catalysis for Energy concludes that BES has done well with its investment in catalysis basic research. Its investment has led to a greater understanding of the fundamental catalytic processes that underlie energy applications, and it has contributed to meeting long-term national energy goals by focusing research on catalytic processes that reduce energy consumption or use alternative energy sources. In some areas the impact of the research has been dramatic, while in others, important advances in catalysis science are yet to be made.




Perspectives on U.S. Competitiveness in Science and Technology


Book Description

Is the United States in danger of losing its competitive edge in science and technology "S & T"? In response to this concern, the Under Secretary of Defense for Personnel and Readiness asked RAND to convene a meeting, held on November 8, 2006, to review evidence presented by experts from academia, government, and the private sector. The papers presented at the meeting addressed a wide range of issues surrounding the United States' current and future S & T competitiveness, including science policy, the quantitative assessment of S & T capability, globalization, the rise of Asia "particularly China and India", innovation, trade, technology diffusion, the increase in foreign-born S & T students and workers in the United States, new directions in the management and compensation of federal S & T workers, and national security and the defense industry. These papers provide a partial survey of the facts, challenges, and questions posed by the potential erosion of U.S.S & T capability. The importance of S & T to U.S. prosperity and security warrants that policymakers pay careful attention to the various high-level reports issued over the past ve years that warn of pressures on the U.S. lead in S & T. The intellectual point of embarkation for the RAND meeting was the foremost recent such report, Rising Above the Gathering Storm: Energizing and Employing America for a Brighter Economic Future, by the National Academy of Sciences.