FSL in Review


Book Description







FSL in Review


Book Description













Flash Flood Forecasting Over Complex Terrain


Book Description

The nation's network of more than 130 Next Generation Radars (NEXRADs) is used to detect wind and precipitation to help National Weather Service forecasters monitor and predict flash floods and other storms. This book assesses the performance of the Sulphur Mountain NEXRAD in Southern California, which has been scrutinized for its ability to detect precipitation in the atmosphere below 6000 feet. The book finds that the Sulphur Mountain NEXRAD provides crucial coverage of the lower atmosphere and is appropriately situated to assist the Los Angeles-Oxnard National Weather Service Forecast Office in successfully forecasting and warning of flash floods. The book concludes that, in general, NEXRAD technology is effective in mountainous terrain but can be improved.







Realizing Teracomputing, Proceedings Of The Tenth Ecmwf Workshop On The Use Of High Performance Computers In Meteorology


Book Description

Geosciences and in particular numerical weather prediction are demanding the highest levels of available computer power. The European Centre for Medium-Range Weather Forecasts, with its experience in using supercomputers in this field, organizes every other year a workshop bringing together manufacturers, computer scientists, researchers and operational users to share their experiences and to learn about the latest developments. This book provides an excellent overview of the latest achievements in and plans for the use of new parallel techniques in meteorology, climatology and oceanography.The proceedings have been selected for coverage in:• Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)




Radar for Meteorological and Atmospheric Observations


Book Description

Epoch-making progress in meteorology and atmospheric science has always been hastened by the development of advanced observational technologies, in particular, radar technology. This technology depends on a wide range of sciences involving diverse disciplines, from electrical engineering and electronics to computer sciences and atmospheric physics. Meteorological radar and atmospheric radar each has a different history and has been developed independently. Particular radar activities have been conducted within their own communities. Although the technology of these radars draws upon many common fields, until now the interrelatedness and interdisciplinary nature of the research fields have not been consistently discussed in one volume containing fundamental theories, observational methods, and results. This book is by two authors who, with long careers in the two fields, one in academia and the other in industry, are ideal partners for writing on the comprehensive science and technology of radars for meteorological and atmospheric observations.