Complex Sciences


Book Description

I was invited to join the Organizing Committee of the First International Conference on Complex Sciences: Theory and Applications (Complex 2009) as its ninth member. At that moment, eight distinguished colleagues, General Co-chairs Eugene Stanley and Gaoxi Xiao, Technical Co-chairs János Kertész and Bing-Hong Wang, Local Co-chairs Hengshan Wang and Hong-An Che, Publicity Team Shi Xiao and Yubo Wang, had spent hundreds of hours pushing the conference half way to its birth. Ever since then, I have been amazed to see hundreds of papers flooding in, reviewed and commented on by the TPC members. Finally, more than 200 contributions were - lected for the proceedings currently in your hands. They include about 200 papers from the main conference (selected from more than 320 submissions) and about 33 papers from the five collated workshops: Complexity Theory of Art and Music (COART) Causality in Complex Systems (ComplexCCS) Complex Engineering Networks (ComplexEN) Modeling and Analysis of Human Dynamics (MANDYN) Social Physics and its Applications (SPA) Complex sciences are expanding their colonies at such a dazzling speed that it - comes literally impossible for any conference to cover all the frontiers.







International Conference on Theory and Application in Nonlinear Dynamics (ICAND 2012)


Book Description

A collection of different lectures presented by experts in the field of nonlinear science provides the reader with contemporary, cutting-edge, research works that bridge the gap between theory and device realizations of nonlinear phenomena. Representative examples of topics covered include: chaos gates, social networks, communication, sensors, lasers, molecular motors, biomedical anomalies, stochastic resonance, nano-oscillators for generating microwave signals and related complex systems. A common theme among these and many other related lectures is to model, study, understand, and exploit the rich behavior exhibited by nonlinear systems to design and fabricate novel technologies with superior characteristics. Consider, for instance, the fact that a shark’s sensitivity to electric fields is 400 times more powerful than the most sophisticated electric-field sensor. In spite of significant advances in material properties, in many cases it remains a daunting task to duplicate the superior signal processing capabilities of most animals. Since nonlinear systems tend to be highly sensitive to perturbations when they occur near the onset of a bifurcation, there are also lectures on the general topic of bifurcation theory and on how to exploit such bifurcations for signal enhancements purposes. This manuscript will appeal to researchers interested in both theory and implementations of nonlinear systems.




Nonlinear Dynamics and Chaos


Book Description

This textbook is aimed at newcomers to nonlinear dynamics and chaos, especially students taking a first course in the subject. The presentation stresses analytical methods, concrete examples, and geometric intuition. The theory is developed systematically, starting with first-order differential equations and their bifurcations, followed by phase plane analysis, limit cycles and their bifurcations, and culminating with the Lorenz equations, chaos, iterated maps, period doubling, renormalization, fractals, and strange attractors.




Applications of Nonlinear Dynamics


Book Description

The ?eld of applied nonlinear dynamics has attracted scientists and engineers across many different disciplines to develop innovative ideas and methods to study c- plex behavior exhibited by relatively simple systems. Examples include: population dynamics, ?uidization processes, applied optics, stochastic resonance, ?ocking and ?ightformations,lasers,andmechanicalandelectricaloscillators. Acommontheme among these and many other examples is the underlying universal laws of nonl- ear science that govern the behavior, in space and time, of a given system. These laws are universal in the sense that they transcend the model-speci?c features of a system and so they can be readily applied to explain and predict the behavior of a wide ranging phenomena, natural and arti?cial ones. Thus the emphasis in the past decades has been in explaining nonlinear phenomena with signi?cantly less att- tion paid to exploiting the rich behavior of nonlinear systems to design and fabricate new devices that can operate more ef?ciently. Recently, there has been a series of meetings on topics such as Experimental Chaos, Neural Coding, and Stochastic Resonance, which have brought together many researchers in the ?eld of nonlinear dynamics to discuss, mainly, theoretical ideas that may have the potential for further implementation. In contrast, the goal of the 2007 ICAND (International Conference on Applied Nonlinear Dynamics) was focused more sharply on the implementation of theoretical ideas into actual - vices and systems.




Proceedings of the International Conference on Applied Sciences and Engineering (ICASE 2023)


Book Description

This is an open access book. We kindly welcome to all academicians, researchers, scientists, engineers and graduate students in the related fields to submit their original research papers. Applications in engineering science that require expertise in mathematics, physics and chemistry. Its mission is to become a voice of the applied science community, addressing researchers and practitioners in different areas ranging from mathematics, physics, and chemistry to all related braches of the engineering, presenting verifiable computational methods, findings, and solutions. The Conference provided a setting for discussing recent developments in various engineering and applied science topics, including Mathematics, Chemistry, Physics, Computational science, Material science, Environmental Science and Chemical engineering. The submitted conference papers will be subjected to stringent peer review and carefully evaluated based on originality and clarity of exposition. All the accepted papers will be published in the conference proceedings. The conference provides opportunities for the attendants to share new ideas, experiences in Applied Sciences and Engineering and to establish collaboration for the future.




Fractional Dynamical Systems: Methods, Algorithms and Applications


Book Description

This book presents a wide and comprehensive spectrum of issues and problems related to fractional-order dynamical systems. It is meant to be a full-fledge, comprehensive presentation of many aspects related to the broadly perceived fractional-order dynamical systems which constitute an extension of the traditional integer-order-type descriptions. This implies far-reaching consequences, both analytic and algorithmic, because—in general—properties of the traditional integer-order systems cannot be directly extended by a straightforward generalization to fractional-order systems, modeled by fractional-order differential equations involving derivatives of an non-integer order. This can be useful for describing and analyzing, for instance, anomalies in the behavior of various systems, chaotic behavior, etc. The book contains both analytic contributions with state-of-the-art and theoretical foundations, algorithmic implementation of tools and techniques, and—finally—some examples of relevant and successful practical applications.




Chaos, Complexity and Leadership 2020


Book Description

This book analyzes a range of new developments in various fields concerning the concepts of chaos and complexity theory. The proceedings of the 7th International Symposium on Chaos, Complexity and Leadership feature newly developed concepts involving various research methodologies for identifying chaos and complexity in different fields of the sciences and leadership. In addition, it explores chaotic and complex systems from all fields of knowledge in order to stake a claim of prevalence of compatibility between knowledge fields. Particular emphasis is placed on exploring non-linearity in order to open a discussion on new approaches to and perspectives on chaos, complexity and leadership. Readers will find coverage of important events that have recently taken place in our world, regardless of whether they were social, political, economic or scientific in nature. The book explores diverse aspects of and issues related to the effects of chaos and complexity in the world; discusses the application of nonlinear dynamics in order to arrive at transformational policies; and offers projections of tomorrow’s world using an interdisciplinary approach. Though primarily intended for readers with an interest in nonlinear science, thanks to its focus on the application of chaos and complexity to other disciplines, the book appeals to a broad readership.




Nonlinear Dynamics, Volume 1


Book Description

Nonlinear Dynamics, Volume 1. Proceedings of the 33rd IMAC, A Conference and Exposition on Balancing Simulation and Testing, 2015, the first volume of ten from the Conference brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on fundamental and applied aspects of Structural Dynamics, including papers on: Nonlinear Oscillations Nonlinear Simulation Using Harmonic Balance Nonlinear Modal Analysis Nonlinear System Identification Nonlinear Modeling & Simulation Nonlinearity in Practice Nonlinear Systems Round Robin on Nonlinear System Identification.




Selected Topics in Nonlinear Dynamics and Theoretical Electrical Engineering


Book Description

This book contains a collection of recent advanced contributions in the field of nonlinear dynamics and synchronization, including selected applications in the area of theoretical electrical engineering. The present book is divided into twenty-one chapters grouped in five parts. The first part focuses on theoretical issues related to chaos and synchronization and their potential applications in mechanics, transportation, communication and security. The second part handles dynamic systems modelling and simulation with special applications to real physical systems and phenomena. The third part discusses some fundamentals of electromagnetics (EM) and addresses the modelling and simulation in some real physical electromagnetic scenarios. The fourth part mainly addresses stability concerns. Finally, the last part assembles some sample applications in the area of optimization, data mining, pattern recognition and image processing.