Optical Fiber Communications


Book Description

Beginning with an overview of historical development, the electromagnetic spectrum, and optical power basics, this book offers an in-depth discussion of optic receivers, optical transmitters and amplifiers. The text discusses attenuation, transmission losses, optical sources such as semiconductor light emitting diodes, and lasers, providing several dispersion-management schemes that restore the amplified signal to its original state. Topics are discussed in a structured manner, with definitions, explanations, examples, illustrations, and informative facts. Extensive pedagogical features, such as numerical problems, review questions, multiple choice questions, and student-focussed learning objectives, are also provided. Mathematical derivations and geometrical representations are included where necessary. This text will be useful for undergraduate and graduate students of electronics, communication engineering, and optical fiber communications.




Fiber Optic Communications


Book Description

Fiber-optic communication systems have advanced dramatically over the last four decades, since the era of copper cables, resulting in low-cost and high-bandwidth transmission. Fiber optics is now the backbone of the internet and long-distance telecommunication. Without it we would not enjoy the benefits of high-speed internet, or low-rate international telephone calls. This book introduces the basic concepts of fiber-optic communication in a pedagogical way. The important mathematical results are derived by first principles rather than citing research articles. In addition, physical interpretations and real-world analogies are provided to help students grasp the fundamental concepts. Key Features: Lucid explanation of key topics such as fibers, lasers, and photodetectors. Includes recent developments such as coherent communication and digital signal processing. Comprehensive treatment of fiber nonlinear transmission. Worked examples, exercises, and answers. Accompanying website with PowerPoint slides and numerical experiments in MATLAB. Intended primarily for senior undergraduates and graduates studying fiber-optic communications, the book is also suitable as a professional resource for researchers working in the field of fiber-optic communications.




An Introduction to Fiber Optics


Book Description

Textbook on the physical principles of optical fibers - for advanced undergraduates and graduates in physics or electrical engineering.




Fiber-optic Communication Systems


Book Description

CD-ROM contains: a software package for designing fiber-optic communication systems called "OptiSystem Lite" and a set of problems for each chapter.




Handbook of Fiber Optic Data Communication


Book Description

The Handbook includes chapters on all the major industry standards, quick reference tables, helpful appendices, plus a new glossary and list of acronyms. This practical handbook can stand alone or as a companion volume to DeCusatis: Fiber Optic Data Communication: Technological Advances and Trends (February 2002, ISBN: 0-12-207892-6), which was developed in tandem with this book.* Includes emerging technologies such as Infiniband, 10 Gigabit Ethernet, and MPLS Optical Switching* Describes leading edge commercial products, including LEAF and MetroCore fibers, dense wavelength multiplexing, and Small Form Factor transceiver packages* Covers all major industry standards, often written by the same people who designed the standards themselves* Includes an expanded listing of references on the World Wide Web, plus hard-to-find references for international, homologation, and type approval requirements* Convenient tables of key optical datacom parameters and glossary with hundreds of definitions and acronyms* Industry buzzwords explained, including SAN, NAS, and MAN networking* Datacom market analysis and future projections from industry leading forecasters




Fiber-optic Communications Technology


Book Description

A useful source of information to anyone who works with fiber optics, this state-of-the-art guide covers the newest technological innovations in fibers, systems and networks, and provides a solid foundation in the basics with lots of examples, practical applications, graphical presentations, and solutions to problems that simulate those found in the workplace. Devotes complete chapters to optical fibers, singlemode fibers, light sources and transmitters, photodetectors and receivers, and more. Provides real data and specification sheets to help users hone their ability to read data sheets and integrate concepts - a critical skill for practicing engineers. Offers a "two-level discussion" in each chapter: a "Basics" section introduces the main ideas and principles involved in the devices covered, and "A Deeper Look" section offers a more theoretical and detailed discussion of the same material. Describes the test, measurement, and troubleshooting of fiber optics communications systems based on existing standards and commercially available equipment. Integrates many pictures of commercially available devices and equipment throughout. For professionals in the electronic technology industry.




Optical Fiber Communications


Book Description

This text succeeds in giving a practical introduction to the fundamentals, problems and techniques of the design and utilisation of optical fiber systems. This edition retains all core features, while incorporating recent improvements and developments in the field.




Fiber Optic Essentials


Book Description

This book is a MUST for everyone in and around the optics community! Fiber Optic Essentials provides professionals and students new to the field of fiber optics with a high-level knowledge of principles, theories and applications. This primer can also be used as a succinct overview of optics for those with some engineering and physics background. Individuals involved with optics in non-traditional capacities such as in marketing and legal departments will find this volume introduces basic concepts completely in an easy to read format. Casimer and Carolyn DeCusatis have provided a concise resource with compact chapters and minimal equations conveying this complex topic in a straightforward and clear-cut style. Included in this book are chapters on fibers, cables, connectors, transmitters, modulators, noise, and optical link design. Concluding this reference are three indispensable appendices covering extensive definitions, acronyms (including initials and commonly used slang), measurement conversions and physical constants. This author team has produced a book that has truly shed light on this difficult subject. - Comprehensively covers basic fiber optic 'facts' - Explains how optics relate to everyday life - Details fiber optic communication standards - Chapter included on medical applications - Timeline traces the history of optics with major milestones




Digital and Analog Fiber Optic Communications for CATV and FTTx Applications


Book Description

This book is intended to provide a step-by-step guide to all design aspects and tradeoffs from theory to application for fiber-optics transceiver electronics. Presenting a compendium of information in a structured way, this book enables the engineer to develop a methodical design approach, a deep understanding of specifications parameters and the reasons behind them, as well as their effects and consequences on system performance, which are essential for proper component design. Further, a fundamental understanding of RF, digital circuit design, and linear and nonlinear phenomena is important in order to achieve the desired performance levels. Becoming familiar with solid-state devices and passives used to build optical receivers and transmitters is also important so one can effectively overcome design limitations.




Essentials of Modern Optical Fiber Communication


Book Description

This book covers important aspects of modern optical communication. It is intended to serve both students and professionals. Consequently, a solid coverage of the necessary fundamentals is combined with an in-depth discussion of recent relevant research results. The book has grown from lecture notes over the years, starting 1992. It accompanies my present lectures Optical Communication A (Fundamentals), B (Mode Coupling), C (Modulation Formats) and D (Selected Topics) at the University of Paderborn, Germany. I gratefully acknowledge contributions to this book from Dr. Timo Pfau, Dr. David Sandel, Dr. Sebastian Hoffmann and Mohamed El-Darawy. Contents Contents 1 Introduction............................................................................ . . 1 2 Optical Waves in Fibers and Components.......................................3 2. 1 Electromagnetic Fundamentals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 1 Maxwell’s Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2. 1. 2 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2. 1. 3 Wave Equation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2. 1. 4 Homogeneous Plane Wave in Isotropic Homogeneous Medium. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 2. 1. 5 Power and Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2. 2 Dielectric Waveguides . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. 2. 1 Dielectric Slab Waveguide . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2. 2. 2 Cylindrical Dielectric Waveguide. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2. 3 Polarization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. 3. 1 Representing States-of-Polarization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 2. 3. 2 Anisotropy, Index Ellipsoid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 2. 3. 3 Jones Matrices, Müller Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 2. 3. 4 Monochromatic Polarization Transmission . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64 2. 3. 5 Polarization Mode Dispersion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 2. 4 Linear Electrooptic Effect. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2. 4. 1 Phase Modulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 2. 4. 2 Soleil-Babinet Compensator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 2. 5 Mode Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2. 5. 1 Mode Orthogonality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 2. 5. 2 Mode Coupling Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .