Mechanisms of antibiotic resistance


Book Description

Antibiotics represent one of the most successful forms of therapy in medicine. But the efficiency of antibiotics is compromised by the growing number of antibiotic-resistant pathogens. Antibiotic resistance, which is implicated in elevated morbidity and mortality rates as well as in the increased treatment costs, is considered to be one of the major global public health threats (www.who.int/drugresistance/en/) and the magnitude of the problem recently prompted a number of international and national bodies to take actions to protect the public (http://ec.europa.eu/dgs/health_consumer/docs/road-map-amr_en.pdf: http://www.who.int/drugresistance/amr_global_action_plan/en/; http://www.whitehouse.gov/sites/default/files/docs/carb_national_strategy.pdf). Understanding the mechanisms by which bacteria successfully defend themselves against the antibiotic assault represent the main theme of this eBook published as a Research Topic in Frontiers in Microbiology, section of Antimicrobials, Resistance, and Chemotherapy. The articles in the eBook update the reader on various aspects and mechanisms of antibiotic resistance. A better understanding of these mechanisms should facilitate the development of means to potentiate the efficacy and increase the lifespan of antibiotics while minimizing the emergence of antibiotic resistance among pathogens.







Challenges to Tackling Antimicrobial Resistance


Book Description

An accessible overview of the challenges in tackling AMR, and the economic and policy responses of the 'One Health' approach. It will appeal to policy-makers seeking to strengthen national and local polices tackling AMR, as well as students and academics who want an overview of the latest scientific evidence regarding effective AMR policies.




E. Coli Infections


Book Description

Gram-negative Escherichia coli (E. coli) bacteria are the most numerous commensal aerobic germs located in the human colon. Diarrhea caused by E. coli pathogenic strains is a major cause of death in developing countries, especially the sub-Saharan and South Asian areas. Some strains cause diarrhea, and all of them may produce an infectious disease. This book includes ten chapters covering the main aspects of infections related to E. coli, their pathogenic mechanisms, treatments, and resistance to diverse antibiotics.




Antimicrobial Resistance


Book Description

Tackling the realities of the antimicrobial resistance (AMR) situation today is no longer uncommon. Many battles have been fought in the past since the discovery of antibiotics between man and microbes. In the tussle of new antibiotic modifications, the transmission of resistant genes, both vertically and horizontally unveils yet another resistant attribute for the microbe, for it only to be faced with a more powerful, wide spectrum antibiotic; the cycle continues-and the winner is yet to be known. This book aims to provide some insight into various molecular mechanisms, agricultural mitigation methods, and the One Health applications to maybe, just maybe, tip the scales towards us.




Microbial Virulence Factors


Book Description

Microbial virulence factors encompass a wide range of molecules produced by pathogenic microorganisms, enhancing their ability to evade their host defenses and cause disease. This broad definition comprises secreted products such as toxins, enzymes, exopolysaccharides, as well as cell surface structures such as capsules, lipopolysaccharides, glyco- and lipoproteins. Intracellular changes in metabolic regulatory networks, governed by protein sensors/regulators and non-coding regulatory RNAs, are also known to contribute to virulence. Furthermore, some secreted microbial products have the ability to enter the host cell and manipulate their machinery, contributing to the success of the infection. The knowledge, at the molecular level, of the biology of microbial pathogens and their virulence factors is central in the development of novel therapeutic molecules and strategies to combat microbial infections. The present collection comprises state of the art research and review papers on virulence factors and mechanisms of a wide range of bacterial and fungal pathogens for humans, animals, and plants, thus reflecting the impact of microorganisms in health and economic human activities, and the importance of the topic.




Global Antimicrobial Resistance Surveillance System


Book Description

"In May 2015, the Sixty-eighth World Health Assembly adopted the Global action plan on antimicrobial resistance, which reflects the global consensus that AMR poses a profound threat to human health. One of the five strategic objectives of the Global action plan is to strengthen the evidence base through enhanced global surveillance and research. The Global Antimicrobial Resistance Surveillance System (GLASS) has been developed to facilitate and encourage a standardized approach to AMR surveillance globally and in turn support the implementation of the Global action plan on antimicrobial resistance. This manual addresses the early phase of implementation of GLASS, focussing on surveillance of resistance in common human bacterial pathogens. The intended readership of this publication is public health professionals and health authorities responsible for national AMR surveillance. It outlines the GLASS standards and describes the road map for implementation of the system between 2015 and 2019. Further development of GLASS will be based on the lessons learnt during this period"--Publisher's description.




Selective Decontamination of the Digestive Tract (SDD)


Book Description

This book explains the basic concepts of Selective Decontamination of the Digestive tract (SDD) to help those involved in treating critically ill patients to improve outcomes and the quality of care. SDD has led to major changes in our understanding, the treatment and prevention of infections in critically ill patients over the past 40 years. It is the most studied intervention in intensive care medicine and is the subject of 73 randomized controlled trials, including over 15000 patients and 15 meta-analyses. SDD reduces morbidity and mortality, is cost-effective and safe as SDD does not increase antimicrobial resistance. Correct application of the SDD strategy enables ICU teams to control infections – even in ICUs with endemic antibiotic resistant microorganisms such as methicillin resistant S. aureus (MRSA). Describing the concept and application of SDD, and presenting case studies and microbiological flow charts, this practical guide will appeal to intensivists, critical care practitioners, junior doctors, microbiologists and ICU-nurses as well as infection control specialists and pharmacists.




Antimicrobial Resistance


Book Description

Summary report published as technical document with reference number: WHO/HSE/PED/AIP/2014.2.




Antimicrobial Resistance in Developing Countries


Book Description

Avoiding infection has always been expensive. Some human populations escaped tropical infections by migrating into cold climates but then had to procure fuel, warm clothing, durable housing, and crops from a short growing season. Waterborne infections were averted by owning your own well or supporting a community reservoir. Everyone got vaccines in rich countries, while people in others got them later if at all. Antimicrobial agents seemed at first to be an exception. They did not need to be delivered through a cold chain and to everyone, as vaccines did. They had to be given only to infected patients and often then as relatively cheap injectables or pills off a shelf for only a few days to get astonishing cures. Antimicrobials not only were better than most other innovations but also reached more of the world’s people sooner. The problem appeared later. After each new antimicrobial became widely used, genes expressing resistance to it began to emerge and spread through bacterial populations. Patients infected with bacteria expressing such resistance genes then failed treatment and remained infected or died. Growing resistance to antimicrobial agents began to take away more and more of the cures that the agents had brought.