Interpolation and Extrapolation Optimal Designs 2


Book Description

This book considers various extensions of the topics treated in the first volume of this series, in relation to the class of models and the type of criterion for optimality. The regressors are supposed to belong to a generic finite dimensional Haar linear space, which substitutes for the classical polynomial case. The estimation pertains to a general linear form of the coefficients of the model, extending the interpolation and extrapolation framework; the errors in the model may be correlated, and the model may be heteroscedastic. Non-linear models, as well as multivariate ones, are briefly discussed. The book focuses to a large extent on criteria for optimality, and an entire chapter presents algorithms leading to optimal designs in multivariate models. Elfving’s theory and the theorem of equivalence are presented extensively. The volume presents an account of the theory of the approximation of real valued functions, which makes it self-consistent.




Interpolation and Extrapolation Optimal Designs V1


Book Description

This book is the first of a series which focuses on the interpolation and extrapolation of optimal designs, an area with significant applications in engineering, physics, chemistry and most experimental fields. In this volume, the authors emphasize the importance of problems associated with the construction of design. After a brief introduction on how the theory of optimal designs meets the theory of the uniform approximation of functions, the authors introduce the basic elements to design planning and link the statistical theory of optimal design and the theory of the uniform approximation of functions. The appendices provide the reader with material to accompany the proofs discussed throughout the book.




mODa 11 - Advances in Model-Oriented Design and Analysis


Book Description

This volume contains pioneering contributions to both the theory and practice of optimal experimental design. Topics include the optimality of designs in linear and nonlinear models, as well as designs for correlated observations and for sequential experimentation. There is an emphasis on applications to medicine, in particular, to the design of clinical trials. Scientists from Europe, the US, Asia, Australia and Africa contributed to this volume of papers from the 11th Workshop on Model Oriented Design and Analysis.




Convex Optimization


Book Description

This book provides easy access to the basic principles and methods for solving constrained and unconstrained convex optimization problems. Included are sections that cover: basic methods for solving constrained and unconstrained optimization problems with differentiable objective functions; convex sets and their properties; convex functions and their properties and generalizations; and basic principles of sub-differential calculus and convex programming problems. Convex Optimization provides detailed proofs for most of the results presented in the book and also includes many figures and exercises for a better understanding of the material. Exercises are given at the end of each chapter, with solutions and hints to selected exercises given at the end of the book. Undergraduate and graduate students, researchers in different disciplines, as well as practitioners will all benefit from this accessible approach to convex optimization methods.




Interpolation and Extrapolation Optimal Designs 2


Book Description

This book considers various extensions of the topics treated in the first volume of this series, in relation to the class of models and the type of criterion for optimality. The regressors are supposed to belong to a generic finite dimensional Haar linear space, which substitutes for the classical polynomial case. The estimation pertains to a general linear form of the coefficients of the model, extending the interpolation and extrapolation framework; the errors in the model may be correlated, and the model may be heteroscedastic. Non-linear models, as well as multivariate ones, are briefly discussed. The book focuses to a large extent on criteria for optimality, and an entire chapter presents algorithms leading to optimal designs in multivariate models. Elfving’s theory and the theorem of equivalence are presented extensively. The volume presents an account of the theory of the approximation of real valued functions, which makes it self-consistent.




Random Evolutionary Systems


Book Description

Within the field of modeling complex objects in natural sciences, which considers systems that consist of a large number of interacting parts, a good tool for analyzing and fitting models is the theory of random evolutionary systems, considering their asymptotic properties and large deviations. In Random Evolutionary Systems we consider these systems in terms of the operators that appear in the schemes of their diffusion and the Poisson approximation. Such an approach allows us to obtain a number of limit theorems and asymptotic expansions of processes that model complex stochastic systems, both those that are autonomous and those dependent on an external random environment. In this case, various possibilities of scaling processes and their time parameters are used to obtain different limit results.




Mathematical Modeling of Random and Deterministic Phenomena


Book Description

This book highlights mathematical research interests that appear in real life, such as the study and modeling of random and deterministic phenomena. As such, it provides current research in mathematics, with applications in biological and environmental sciences, ecology, epidemiology and social perspectives. The chapters can be read independently of each other, with dedicated references specific to each chapter. The book is organized in two main parts. The first is devoted to some advanced mathematical problems regarding epidemic models; predictions of biomass; space-time modeling of extreme rainfall; modeling with the piecewise deterministic Markov process; optimal control problems; evolution equations in a periodic environment; and the analysis of the heat equation. The second is devoted to a modelization with interdisciplinarity in ecological, socio-economic, epistemological, demographic and social problems. Mathematical Modeling of Random and Deterministic Phenomena is aimed at expert readers, young researchers, plus graduate and advanced undergraduate students who are interested in probability, statistics, modeling and mathematical analysis.




Asymptotic and Analytic Methods in Stochastic Evolutionary Symptoms


Book Description

This book illustrates a number of asymptotic and analytic approaches applied for the study of random evolutionary systems, and considers typical problems for specific examples. In this case, constructive mathematical models of natural processes are used, which more realistically describe the trajectories of diffusion-type processes, rather than those of the Wiener process. We examine models where particles have some free distance between two consecutive collisions. At the same time, we investigate two cases: the Markov evolutionary system, where the time during which the particle moves towards some direction is distributed exponentially with intensity parameter λ; and the semi-Markov evolutionary system, with arbitrary distribution of the switching process. Thus, the models investigated here describe the motion of particles with a finite speed and the proposed random evolutionary process with characteristics of a natural physical process: free run and finite propagation speed. In the proposed models, the number of possible directions of evolution can be finite or infinite.




Semi-Markov Migration Models for Credit Risk


Book Description

Credit risk is one of the most important contemporary problems for banks and insurance companies. Indeed, for banks, more than forty percent of the equities are necessary to cover this risk. Though this problem is studied by large rating agencies with substantial economic, social and financial tools, building stochastic models is nevertheless necessary to complete this descriptive orientation. This book presents a complete presentation of such a category of models using homogeneous and non-homogeneous semi-Markov processes developed by the authors in several recent papers. This approach provides a good method of evaluating the default risk and the classical VaR indicators used for Solvency II and Basel III governance rules. This book is the first to present a complete semi-Markov treatment of credit risk while also insisting on the practical use of the models presented here, including numerical aspects, so that this book is not only useful for scientific research but also to managers working in this field for banks, insurance companies, pension funds and other financial institutions.




Chi-squared Goodness-of-fit Tests for Censored Data


Book Description

This book is devoted to the problems of construction and application of chi-squared goodness-of-fit tests for complete and censored data. Classical chi-squared tests assume that unknown distribution parameters are estimated using grouped data, but in practice this assumption is often forgotten. In this book, we consider modified chi-squared tests, which do not suffer from such a drawback. The authors provide examples of chi-squared tests for various distributions widely used in practice, and also consider chi-squared tests for the parametric proportional hazards model and accelerated failure time model, which are widely used in reliability and survival analysis. Particular attention is paid to the choice of grouping intervals and simulations. This book covers recent innovations in the field as well as important results previously only published in Russian. Chi-squared tests are compared with other goodness-of-fit tests (such as the Cramer-von Mises-Smirnov, Anderson-Darling and Zhang tests) in terms of power when testing close competing hypotheses.