Interpolation, Schur Functions and Moment Problems


Book Description

Schur analysis originated with an 1917 article which associated to a function, which is analytic and contractive in the open unit disk, a sequence, finite or infinite, of numbers in the open unit disk, called Schur coefficients, often named reflection coefficients in signal processing. This volume comprises seven essays dedicated to the analysis of Schur and Carathéodory functions and to the solutions of problems for these classes.




Interpolation, Schur Functions and Moment Problems II


Book Description

The origins of Schur analysis lie in a 1917 article by Issai Schur in which he constructed a numerical sequence to correspond to a holomorphic contractive function on the unit disk. These sequences are now known as Schur parameter sequences. Schur analysis has grown significantly since its beginnings in the early twentieth century and now encompasses a wide variety of problems related to several classes of holomorphic functions and their matricial generalizations. These problems include interpolation and moment problems as well as Schur parametrization of particular classes of contractive or nonnegative Hermitian block matrices. This book is primarily devoted to topics related to matrix versions of classical interpolation and moment problems. The major themes include Schur analysis of nonnegative Hermitian block Hankel matrices and the construction of Schur-type algorithms. This book also covers a number of recent developments in orthogonal rational matrix functions, matrix-valued Carathéodory functions and maximal weight solutions for particular matricial moment problems on the unit circle.​




Complex Function Theory, Operator Theory, Schur Analysis and Systems Theory


Book Description

This book is dedicated to Victor Emmanuilovich Katsnelson on the occasion of his 75th birthday and celebrates his broad mathematical interests and contributions.Victor Emmanuilovich’s mathematical career has been based mainly at the Kharkov University and the Weizmann Institute. However, it also included a one-year guest professorship at Leipzig University in 1991, which led to him establishing close research contacts with the Schur analysis group in Leipzig, a collaboration that still continues today. Reflecting these three periods in Victor Emmanuilovich's career, present and former colleagues have contributed to this book with research inspired by him and presentations on their joint work. Contributions include papers in function theory (Favorov-Golinskii, Friedland-Goldman-Yomdin, Kheifets-Yuditskii) , Schur analysis, moment problems and related topics (Boiko-Dubovoy, Dyukarev, Fritzsche-Kirstein-Mädler), extension of linear operators and linear relations (Dijksma-Langer, Hassi-de Snoo, Hassi -Wietsma) and non-commutative analysis (Ball-Bolotnikov, Cho-Jorgensen).




Inverse Problems and Nonlinear Evolution Equations


Book Description

This book is based on the method of operator identities and related theory of S-nodes, both developed by Lev Sakhnovich. The notion of the transfer matrix function generated by the S-node plays an essential role. The authors present fundamental solutions of various important systems of differential equations using the transfer matrix function, that is, either directly in the form of the transfer matrix function or via the representation in this form of the corresponding Darboux matrix, when Bäcklund–Darboux transformations and explicit solutions are considered. The transfer matrix function representation of the fundamental solution yields solution of an inverse problem, namely, the problem to recover system from its Weyl function. Weyl theories of selfadjoint and skew-selfadjoint Dirac systems, related canonical systems, discrete Dirac systems, system auxiliary to the N-wave equation and a system rationally depending on the spectral parameter are obtained in this way. The results on direct and inverse problems are applied in turn to the study of the initial-boundary value problems for integrable (nonlinear) wave equations via inverse spectral transformation method. Evolution of the Weyl function and solution of the initial-boundary value problem in a semi-strip are derived for many important nonlinear equations. Some uniqueness and global existence results are also proved in detail using evolution formulas. The reading of the book requires only some basic knowledge of linear algebra, calculus and operator theory from the standard university courses.




Indefinite Inner Product Spaces, Schur Analysis, and Differential Equations


Book Description

This volume, which is dedicated to Heinz Langer, includes biographical material and carefully selected papers. Heinz Langer has made fundamental contributions to operator theory. In particular, he has studied the domains of operator pencils and nonlinear eigenvalue problems, the theory of indefinite inner product spaces, operator theory in Pontryagin and Krein spaces, and applications to mathematical physics. His works include studies on and applications of Schur analysis in the indefinite setting, where the factorization theorems put forward by Krein and Langer for generalized Schur functions, and by Dijksma-Langer-Luger-Shondin, play a key role. The contributions in this volume reflect Heinz Langer’s chief research interests and will appeal to a broad readership whose work involves operator theory.




Operator Theory, Analysis and the State Space Approach


Book Description

This volume is dedicated to Rien Kaashoek on the occasion of his 80th birthday and celebrates his many contributions to the field of operator theory during more than fifty years. In the first part of the volume, biographical information and personal accounts on the life of Rien Kaashoek are presented. Eighteen research papers by friends and colleagues of Rien Kaashoek are included in the second part. Contributions by J. Agler, Z.A. Lykova, N.J. Young, J.A. Ball, G.J. Groenewald, S. ter Horst, H. Bart, T. Ehrhardt, B. Silbermann, J.M. Bogoya, S.M. Grudsky, I.S. Malysheva, A. Böttcher, E. Wegert, Z. Zhou, Y. Eidelman, I. Haimovici, A.E. Frazho, A.C.M. Ran, B. Fritzsche, B. Kirstein, C.Madler, J. J. Jaftha, D.B. Janse van Rensburg, P. Junghanns, R. Kaiser, J. Nemcova, M. Petreczky, J.H. van Schuppen, L. Plevnik, P. Semrl, A. Sakhnovich, F.-O. Speck, S. Sremac, H.J. Woerdeman, H. Wolkowicz and N. Vasilevski.




Recent Advances in Inverse Scattering, Schur Analysis and Stochastic Processes


Book Description

The volume is dedicated to Lev Sakhnovich, who made fundamental contributions in operator theory and related topics. Besides bibliographic material, it includes a number of selected papers related to Lev Sakhnovich's research interests. The papers are related to operator identities, moment problems, random matrices and linear stochastic systems.




Operator Theory, System Theory and Related Topics


Book Description

This volume presents the refereed proceedings of the Conference in Operator The ory in Honour of Moshe Livsic 80th Birthday, held June 29 to July 4, 1997, at the Ben-Gurion University of the Negev (Beer-Sheva, Israel) and at the Weizmann In stitute of Science (Rehovot, Israel). The volume contains papers in operator theory and its applications (understood in a very wide sense), many of them reflecting, 1 directly or indirectly, a profound impact of the work of Moshe Livsic. Moshe (Mikhail Samuilovich) Livsic was born on July 4, 1917, in the small town of Pokotilova near Uman, in the province of Kiev in the Ukraine; his family moved to Odessa when he was four years old. In 1933 he enrolled in the Department of Physics and Mathematics at the Odessa State University, where he became a student of M. G. Krein and an active participant in Krein's seminar - one of the centres where the ideas and methods of functional analysis and operator theory were being developed. Besides M. G. Krein, M. S. Livsic was strongly influenced B. Va. Levin, an outstanding specialist in the theory of analytic functions. A by deep understanding of operator theory as well as function theory and a penetrating search of connections between the two, were to become one of the landmarks of M. S. Livsic's work. M. S. Livsic defended his Ph. D.




Slice Hyperholomorphic Schur Analysis


Book Description

This book defines and examines the counterpart of Schur functions and Schur analysis in the slice hyperholomorphic setting. It is organized into three parts: the first introduces readers to classical Schur analysis, while the second offers background material on quaternions, slice hyperholomorphic functions, and quaternionic functional analysis. The third part represents the core of the book and explores quaternionic Schur analysis and its various applications. The book includes previously unpublished results and provides the basis for new directions of research.




Analysis, Probability And Mathematical Physics On Fractals


Book Description

In the 50 years since Mandelbrot identified the fractality of coastlines, mathematicians and physicists have developed a rich and beautiful theory describing the interplay between analytic, geometric and probabilistic aspects of the mathematics of fractals. Using classical and abstract analytic tools developed by Cantor, Hausdorff, and Sierpinski, they have sought to address fundamental questions: How can we measure the size of a fractal set? How do waves and heat travel on irregular structures? How are analysis, geometry and stochastic processes related in the absence of Euclidean smooth structure? What new physical phenomena arise in the fractal-like settings that are ubiquitous in nature?This book introduces background and recent progress on these problems, from both established leaders in the field and early career researchers. The book gives a broad introduction to several foundational techniques in fractal mathematics, while also introducing some specific new and significant results of interest to experts, such as that waves have infinite propagation speed on fractals. It contains sufficient introductory material that it can be read by new researchers or researchers from other areas who want to learn about fractal methods and results.