Interpretation of Classical Electromagnetism


Book Description

The aim of this book is to interpret all the laws of classical electromagnetism in a modern coherent way. In a typical undergraduate course using vector analysis, the students finally end up with Maxwell's equations, when they are often exhausted after a very long course, in which full discussions are properly given of the full range of applications of individual laws, each of which is important in its own right. As a result, many students do not appreciate how limited is the experimental evidence on the basis of which Maxwell's equations are normally developed and they do not always appre ciate the underlying unity of classical electromagnetism, before they go on to graduate courses in which Maxwell's equations are taken as axiomatic. This book is designed to be used between such an undergraduate course and graduate courses. It is written by an experimental physicist and is intended to be used by physicists, electrical engineers and applied mathematicians.




Foundations of Classical Electrodynamics


Book Description

In this book we display the fundamental structure underlying classical electro dynamics, i. e. , the phenomenological theory of electric and magnetic effects. The book can be used as a textbook for an advanced course in theoretical electrodynamics for physics and mathematics students and, perhaps, for some highly motivated electrical engineering students. We expect from our readers that they know elementary electrodynamics in the conventional (1 + 3)-dimensional form including Maxwell's equations. More over, they should be familiar with linear algebra and elementary analysis, in cluding vector analysis. Some knowledge of differential geometry would help. Our approach rests on the metric-free integral formulation of the conservation laws of electrodynamics in the tradition of F. Kottler (1922), E. Cartan (1923), and D. van Dantzig (1934), and we stress, in particular, the axiomatic point of view. In this manner we are led to an understanding of why the Maxwell equa tions have their specific form. We hope that our book can be seen in the classical tradition of the book by E. J. Post (1962) on the Formal Structure of Electro magnetics and of the chapter "Charge and Magnetic Flux" of the encyclopedia article on classical field theories by C. Truesdell and R. A. Toupin (1960), in cluding R. A. Toupin's Bressanone lectures (1965); for the exact references see the end of the introduction on page 11. .




Essays on the Formal Aspects of Electromagnetic Theory


Book Description

The book deals with formal aspects of electromagnetic theory from the classical, the semiclassical and the quantum viewpoints in essays written by internationally distinguished scholars from several countries. The fundamental basis of electromagnetic theory is examined in order to elucidate Maxwell's equations, identify problematic aspects as well as outstanding problems, suggest ways and means of overcoming the obstacles, and review existing literature.This book will be especially valuable for those who wish to go in depth, rather than simply use Maxwell's equations for the solution of engineering problems. Graduate students will find it rich in dissertation topics, and advanced researchers will relish the controversial and detailed arguments and models.




Inconsistency, Asymmetry, and Non-Locality


Book Description

Mathias Frisch provides the first sustained philosophical discussion of conceptual problems in classical particle-field theories. Part of the book focuses on the problem of a satisfactory equation of motion for charged particles interacting with electromagnetic fields. As Frisch shows, the standard equation of motion results in a mathematically inconsistent theory, yet there is no fully consistent and conceptually unproblematic alternative theory. Frisch describes in detail how the search for a fundamental equation of motion is partly driven by pragmatic considerations (like simplicity and mathematical tractability) that can override the aim for full consistency. The book also offers a comprehensive review and criticism of both the physical and philosophical literature on the temporal asymmetry exhibited by electromagnetic radiation fields, including Einstein's discussion of the asymmetry and Wheeler and Feynman's influential absorber theory of radiation. Frisch argues that attempts to derive the asymmetry from thermodynamic or cosmological considerations fail and proposes that we should understand the asymmetry as due to a fundamental causal constraint. The book's overarching philosophical thesis is that standard philosophical accounts that strictly identify scientific theories with a mathematical formalism and a mapping function specifying the theory's ontology are inadequate, since they permit neither inconsistent yet genuinely successful theories nor thick causal notions to be part of fundamental physics.




Mathematical Methods For Physics


Book Description

This classic book helps students learn the basics in physics by bridging the gap between mathematics and the basic fundamental laws of physics. With supplemental material such as graphs and equations, Mathematical Methods for Physics creates a strong, solid anchor of learning. The text has three parts: Part I focuses on the use of special functions in solving the homogeneous partial differential equations of physics, and emphasizes applications to topics such as electrostatics, wave guides, and resonant cavities, vibrations of membranes, heat flow, potential flow in fluids, plane and spherical waves. Part II deals with the solution of inhomogeneous differential equations with particular emphasis on problems in electromagnetism, Green's functions for Poisson's equation, the wave equation and the diffusion equation, and the solution of integral equations by iteration, eigenfunction expansion and the Fredholm series. Finally, Part II explores complex variable techniques, including evalution of itegrals, dispersion relations, special functions in the complex plane, one-sided Fourier transforms, and Laplace transforms.




Electrodynamics


Book Description

The emphasis in this text is on classical electromagnetic theory and electrodynamics, that is, dynamical solutions to the Lorentz-force and Maxwell's equations. The natural appearance of the Minkowski spacetime metric in the paravector space of Clifford's geometric algebra is used to formulate a covariant treatment in special relativity that seamlessly connects spacetime concepts to the spatial vector treatments common in undergraduate texts. Baylis' geometrical interpretation, using such powerful tools as spinors and projectors, essentially allows a component-free notation and avoids the clutter of indices required in tensorial treatments. The exposition is clear and progresses systematically - from a discussion of electromagnetic units and an explanation of how the SI system can be readily converted to the Gaussian or natural Heaviside-Lorentz systems, to an introduction of geometric algebra and the paravector model of spacetime, and finally, special relativity. Other topics include Maxwell's equation(s), the Lorentz-force law, the Fresnel equations, electromagnetic waves and polarization, wave guides, radiation from accelerating charges and time-dependent currents, the Liénard-Wiechert potentials, and radiation reaction, all of which benefit from the modern relativistic approach. Numerous worked examples and exercises dispersed throughout the text help the reader understand new concepts and facilitate self-study of the material. Each chapter concludes with a set of problems, many with answers. Complete solutions are also available. An excellent feature is the integration of Maple into the text, thereby facilitating difficult calculations. To download accompanying Maple worksheets, please visit http://www.cs.uwindsor.ca/users/b/baylis




Introduction to Electrodynamics


Book Description

This is a re-issued and affordable printing of the widely used undergraduate electrodynamics textbook.




Collective Electrodynamics


Book Description

In this book Carver Mead offers a radically new approach to the standard problems of electromagnetic theory. Motivated by the belief that the goal of scientific research should be the simplification and unification of knowledge, he describes a new way of doing electrodynamics—collective electrodynamics—that does not rely on Maxwell's equations, but rather uses the quantum nature of matter as its sole basis. Collective electrodynamics is a way of looking at how electrons interact, based on experiments that tell us about the electrons directly. (As Mead points out, Maxwell had no access to these experiments.) The results Mead derives for standard electromagnetic problems are identical to those found in any text. Collective electrodynamics reveals, however, that quantities that we usually think of as being very different are, in fact, the same—that electromagnetic phenomena are simple and direct manifestations of quantum phenomena. Mead views his approach as a first step toward reformulating quantum concepts in a clear and comprehensible manner. The book is divided into five sections: magnetic interaction of steady currents, propagating waves, electromagnetic energy, radiation in free space, and electromagnetic interaction of atoms. In an engaging preface, Mead tells how his approach to electromagnetic theory was inspired by his interaction with Richard Feynman.




Advanced Electromagnetism: Foundations: Theory And Applications


Book Description

Advanced Electromagnetism: Foundations, Theory and Applications treats what is conventionally called electromagnetism or Maxwell's theory within the context of gauge theory or Yang-Mills theory. A major theme of this book is that fields are not stand-alone entities but are defined by their boundary conditions. The book has practical relevance to efficient antenna design, the understanding of forces and stresses in high energy pulses, ring laser gyros, high speed computer logic elements, efficient transfer of power, parametric conversion, and many other devices and systems. Conventional electromagnetism is shown to be an underdeveloped, rather than a completely developed, field of endeavor, with major challenges in development still to be met.




Advanced Electromagnetism and Vacuum Physics


Book Description

This book is aimed at a large audience: scientists, engineers, professors and students wise enough to keep a critical stance whenever confronted with the chilling dogmas of contemporary physics. Readers will find a tantalizing amount of material calculated to nurture their thoughts and arouse their suspicion, to some degree at least, on the so-called validity of today's most celebrated physical theories. Contents: Wave Meaning of the Special Relativity Theory; Change of Reference Frame; Relativistic and Classical Mechanics; Experimental Tests of Special Relativity; Partial Differential Equations of Second Order; The Wave Packet Concept; Electromagnetism; Electromagnetic Induction; Amp re and Lorentz Forces; The Li(r)nardOCoWiechert Potential; Analysis of the Electromagnetic Field; Photonics Versus Electromagnetism; Radiation of Extended Sources; The Green Formulation; Wave Extinction in a Dielectric; Plasma Equation. Readership: Students and academics in advanced physics."