Data Analysis, Interpretation, and Theory in Literacy Studies Research


Book Description

Novice and early career researchers often have difficulty with understanding how theory, data analysis and interpretation of findings “hang together” in a well-designed and theorized qualitative research investigation and with learning how to draw on such understanding to conduct rigorous data analysis and interpretation of their analytic results. Data Analysis, Interpretation, and Theory in Literacy Studies Research demonstrates how to design, conduct and analyze a well put together qualitative research project. Using their own successful studies, chapter authors spell out a problem area, research question, and theoretical framing, carefully explaining their choices and decisions. They then show in detail how they analyzed their data, and why they took this approach. Finally, they demonstrate how they interpreted the results of their analysis, to make them meaningful in research terms. Approaches include interactional sociolinguistics, microethnographic discourse analysis, multimodal analysis, iterative coding, conversation analysis, and multimediated discourse analysis, among others. This book will appeal to beginning researchers and to literacy researchers responsible for teaching qualitative literacy studies research design at undergraduate and graduate levels. Perfect for courses such as: Literacy Research Seminar | Introduction to Qualitative Research | Advanced Research Methods | Studying New Literacies and Media | Research Perspectives in Literacy | Discourse Analysis | Advanced Qualitative Data Analysis | Sociolinguistic Analysis | Classroom Language Research




Research and Evaluation Methods in Special Education


Book Description

This text will enable readers to use tools to design, conduct and report research in a way that transforms, when appropriate, the delivery of special education.







Interpreting Quantitative Data with SPSS


Book Description

This is a textbook for introductory courses in quantitative research methods across the social sciences. It offers a detailed explanation of introductory statistical techniques and presents an overview of the contexts in which they should be applied.




Just Plain Data Analysis


Book Description

Just Plain Data Analysis teaches students statistical literacy skills that they can use to evaluate and construct arguments about public affairs issues grounded in numerical evidence. The book addresses skills that are often not taught in introductory social science research methods courses and that are often covered sketchily in the research methods textbooks: where to find commonly used measures of political and social conditions; how to assess the reliability and validity of specific indicators; how to present data efficiently in charts and tables; how to avoid common misinterpretations and misrepresentations of data; and how to evaluate causal arguments based on numerical data. With a new chapter on statistical fallacies and updates throughout the text, the new edition teaches students how to find, interpret, and present commonly used social indicators in an even clearer and more practical way.




Understanding Statistical Analysis and Modeling


Book Description

Understanding Statistical Analysis and Modeling is a text for graduate and advanced undergraduate students in the social, behavioral, or managerial sciences seeking to understand the logic of statistical analysis. Robert Bruhl covers all the basic methods of descriptive and inferential statistics in an accessible manner by way of asking and answering research questions. Concepts are discussed in the context of a specific research project and the book includes probability theory as the basis for understanding statistical inference. Instructions on using SPSS® are included so that readers focus on interpreting statistical analysis rather than calculations. Tables are used, rather than formulas, to describe the various calculations involved with statistical analysis and the exercises in the book are intended to encourage students to formulate and execute their own empirical investigations.




Learning Statistics with R


Book Description

"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com




Statistics for Political Analysis


Book Description

Statistics are just as vital to understanding political science as the study of institutions, but getting students to understand them when teaching a methods course can be a big challenge. Statistics for Political Analysis makes understanding the numbers easy. The only introduction to statistics book written specifically for political science undergraduates, this book explains each statistical concept in plain language—from basic univariate statistics and the basic measures of association to bivariate and multivariate regression—and uses real world political examples. Students learn the relevance of statistics to political science, how to understand and calculate statistics mathematically, and how to obtain them using SPSS. All calculations are modeled step-by-step, giving students needed practice to master the process without making it intimidating. Each chapter concludes with exercises that get students actively applying the steps and building their professional skills through data calculation, analysis, and memo writing.




Understanding The New Statistics


Book Description

This is the first book to introduce the new statistics - effect sizes, confidence intervals, and meta-analysis - in an accessible way. It is chock full of practical examples and tips on how to analyze and report research results using these techniques. The book is invaluable to readers interested in meeting the new APA Publication Manual guidelines by adopting the new statistics - which are more informative than null hypothesis significance testing, and becoming widely used in many disciplines. Accompanying the book is the Exploratory Software for Confidence Intervals (ESCI) package, free software that runs under Excel and is accessible at www.thenewstatistics.com. The book’s exercises use ESCI's simulations, which are highly visual and interactive, to engage users and encourage exploration. Working with the simulations strengthens understanding of key statistical ideas. There are also many examples, and detailed guidance to show readers how to analyze their own data using the new statistics, and practical strategies for interpreting the results. A particular strength of the book is its explanation of meta-analysis, using simple diagrams and examples. Understanding meta-analysis is increasingly important, even at undergraduate levels, because medicine, psychology and many other disciplines now use meta-analysis to assemble the evidence needed for evidence-based practice. The book’s pedagogical program, built on cognitive science principles, reinforces learning: Boxes provide "evidence-based" advice on the most effective statistical techniques. Numerous examples reinforce learning, and show that many disciplines are using the new statistics. Graphs are tied in with ESCI to make important concepts vividly clear and memorable. Opening overviews and end of chapter take-home messages summarize key points. Exercises encourage exploration, deep understanding, and practical applications. This highly accessible book is intended as the core text for any course that emphasizes the new statistics, or as a supplementary text for graduate and/or advanced undergraduate courses in statistics and research methods in departments of psychology, education, human development , nursing, and natural, social, and life sciences. Researchers and practitioners interested in understanding the new statistics, and future published research, will also appreciate this book. A basic familiarity with introductory statistics is assumed.




How to Use Pasw Statistics


Book Description

• Designed for use by novice computer users, this text begins with the basics, such as starting SPSS, defining variables, and entering and saving data. • All major statistical techniques covered in beginning statistics classes are included: · descriptive statistics · graphing data · prediction and association · parametric inferential statistics · nonparametric inferential statistics · statistics for test construction • Each section starts with a brief description of the statistic that is covered and important underlying assumptions, which help students select appropriate statistics. • Each section describes how to interpret results and express them in a research report after the data are analyzed. For example, students are shown how to phrase the results of a significant and an insignificant t test. • More than 200 screenshots (including sample output) throughout the book show students exactly what to expect as they follow along using SPSS. • A glossary of statistical terms is included, which makes a handy reference for students who need to review the meanings of basic statistical terms. • Practice exercises throughout the book give students stimulus material to use as they practice to achieve mastery of the program. • Thoroughly field-tested; your students are certain to appreciate this book.