NUREG/CR.


Book Description




Strong Ground Motion Seismology


Book Description

This book contains selected papers presented at the NATO Advanced Study Institute on "Strong Ground Motion Seismology", held in Ankara, Turkey between June 10 and 21, 1985. The strong ground motion resulting from a major earthquake determines the level of the seismic hazard to enable earthquake engineers to assess the structural performance and the consecutive risks to the property and life, as well as providing detailed information to seismologists about its source mechanism. From the earthquake engineering point the main problem is the specification of a design level ground motion for a given source-site-structure-economic life and risk combination through deterministic and probabilistic approaches. In seismology the strong motion data provide the high frequency information to determine the rupture process and the complexity of the source mechanism. The effects of the propagation path on the strong ground motion is a research area receiving sub stantial attenuation both from earthquake engineers and seismologists. The Institute provided a venue for the treatment of the subject matter by a series of lectures on earthquake source models and near field theories; effects of propagation paths and site conditions, numerical and empirical methods for prediction; data acquisition and analysis; hazard assessment and engineering application.







Seismic Design with Supplemental Energy Dissipation Devices


Book Description

The purpose of this monograph is to impart basic concepts of the supplemental energy dissipation technology to design engineers, architects, and building officials so they can understand its benefits and limitations in structural applications. The approach is introductory. References are cited throughout the monograph for readers who wish to study the subject in more depth.Supplemental energy dissipation systems are recent innovations to improve earthquake building performance. Research has led to a better understanding of the effects of supplemental energy dissipation on the earthquake response of buildings. Over the last 20 years, significant progress has been made in developing manufactured systems. They are being reliably designed and installed in new as well as existing buildings.Development of design codes and standards for energy dissipation systems has progressed slowly. This monograph summarizes information on their use in designing new earthquake-resistant buildings and upgrading the seismic performance of existing buildings. The following areas are covered:? The physical consequences of adding energy dissipation systems to a structure for various types of input motion? Summary of generic energy dissipation device characteristics? Summary of pros and cons of specific device characteristics in meeting selected design objectives? Seismic design limits for selecting energy dissipation systems? Design approaches for the limits of elastic or inelastic response




Computational Methods in Earthquake Engineering


Book Description

This is the third book in a series on Computational Methods in Earthquake Engineering. The purpose of this volume is to bring together the scientific communities of Computational Mechanics and Structural Dynamics, offering a wide coverage of timely issues on contemporary Earthquake Engineering. This volume will facilitate the exchange of ideas in topics of mutual interest and can serve as a platform for establishing links between research groups with complementary activities. The computational aspects are emphasized in order to address difficult engineering problems of great social and economic importance.




Scientific and Technical Aerospace Reports


Book Description

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.




EARTHQUAKE RESISTANT DESIGN OF STRUCTURES


Book Description

This comprehensive and well-organized book presents the concepts and principles of earthquake resistant design of structures in an easy-to-read style. The use of these principles helps in the implementation of seismic design practice. The book adopts a step-by-step approach, starting from the fundamentals of structural dynamics to application of seismic codes in analysis and design of structures. The text also focusses on seismic evaluation and retrofitting of reinforced concrete and masonry buildings. The text has been enriched with a large number of diagrams and solved problems to reinforce the understanding of the concepts. Intended mainly as a text for undergraduate and postgraduate students of civil engineering, this text would also be of considerable benefit to practising engineers, architects, field engineers and teachers in the field of earthquake resistant design of structures.







Strong Motion Instrumentation for Civil Engineering Structures


Book Description

Most of the existing strong motion instrumentation on civil engineering structures is installed and operated as federal, state, university, industry or private applications, in many cases operated as a closed system. This hampers co-operation and data exchange, hampering the acquisition of strong motion and structural data, sometimes even within a single country. There is a powerful need to inform engineers of existing strong motion data and to improve the accessibility of data worldwide. This book will play a role in fulfilling such a need by disseminating state-of-the art information, technology and developments in the strong motion instrumentation of civil engineering structures. The subject has direct implications for the earthquake response of structures, improvements in design for earthquake resistance, and hazard mitigation. Readership: Researchers in earthquake engineering, engineers designing earthquake resistant structures, and producers of strong motion recording equipment.




Earthquake Engineering Handbook


Book Description

Earthquakes are nearly unique among natural phenomena - they affect virtually everything within a region, from massive buildings and bridges, down to the furnishings within a home. Successful earthquake engineering therefore requires a broad background in subjects, ranging from the geologic causes and effects of earthquakes to understanding the imp