Interpreting Quantitative Data with SPSS


Book Description

This is a textbook for introductory courses in quantitative research methods across the social sciences. It offers a detailed explanation of introductory statistical techniques and presents an overview of the contexts in which they should be applied.




Quantitative Analysis and IBM® SPSS® Statistics


Book Description

This guide is for practicing statisticians and data scientists who use IBM SPSS for statistical analysis of big data in business and finance. This is the first of a two-part guide to SPSS for Windows, introducing data entry into SPSS, along with elementary statistical and graphical methods for summarizing and presenting data. Part I also covers the rudiments of hypothesis testing and business forecasting while Part II will present multivariate statistical methods, more advanced forecasting methods, and multivariate methods. IBM SPSS Statistics offers a powerful set of statistical and information analysis systems that run on a wide variety of personal computers. The software is built around routines that have been developed, tested, and widely used for more than 20 years. As such, IBM SPSS Statistics is extensively used in industry, commerce, banking, local and national governments, and education. Just a small subset of users of the package include the major clearing banks, the BBC, British Gas, British Airways, British Telecom, the Consumer Association, Eurotunnel, GSK, TfL, the NHS, Shell, Unilever, and W.H.S. Although the emphasis in this guide is on applications of IBM SPSS Statistics, there is a need for users to be aware of the statistical assumptions and rationales underpinning correct and meaningful application of the techniques available in the package; therefore, such assumptions are discussed, and methods of assessing their validity are described. Also presented is the logic underlying the computation of the more commonly used test statistics in the area of hypothesis testing. Mathematical background is kept to a minimum.




IBM SPSS for Introductory Statistics


Book Description

Designed to help students analyze and interpret research data using IBM SPSS, this user-friendly book, written in easy-to-understand language, shows readers how to choose the appropriate statistic based on the design, and to interpret outputs appropriately. The authors prepare readers for all of the steps in the research process: design, entering and checking data, testing assumptions, assessing reliability and validity, computing descriptive and inferential parametric and nonparametric statistics, and writing about outputs. Dialog windows and SPSS syntax, along with the output, are provided. Three realistic data sets, available on the Internet, are used to solve the chapter problems. The new edition features: Updated to IBM SPSS version 20 but the book can also be used with older and newer versions of SPSS. A new chapter (7) including an introduction to Cronbach’s alpha and factor analysis. Updated Web Resources with PowerPoint slides, additional activities/suggestions, and the answers to even-numbered interpretation questions for the instructors, and chapter study guides and outlines and extra SPSS problems for the students. The web resource is located www.routledge.com/9781848729827 . Students, instructors, and individual purchasers can access the data files to accompany the book at www.routledge.com/9781848729827 . IBM SPSS for Introductory Statistics, Fifth Edition provides helpful teaching tools: All of the key IBM SPSS windows needed to perform the analyses. Complete outputs with call-out boxes to highlight key points. Flowcharts and tables to help select appropriate statistics and interpret effect sizes. Interpretation sections and questions help students better understand and interpret the output. Assignments organized the way students proceed when they conduct a research project. Examples of how to write about outputs and make tables in APA format. Helpful appendices on how to get started with SPSS and write research questions. An ideal supplement for courses in either statistics, research methods, or any course in which SPSS is used, such as in departments of psychology, education, and other social and health sciences. This book is also appreciated by researchers interested in using SPSS for their data analysis.




Interpreting Quantitative Data with IBM SPSS Statistics


Book Description

The second edition of Interpreting Quantitative Data with IBM SPSS Statistics is an invaluable resource for students analysing quantitative data for the first time. The book clearly sets out a range of statistical techniques and their common applications, explaining their logic and links to the research process. It also shows how SPSS can be used as a tool to aid analysis. Key features of the second edition include: - new chapters on one-way and two-way ANOVA, the Chi-square test and linear regression. - SPSS lab sessions following each chapter which demonstrate how SPSS can be used in practice - sets of exercises and ′real-life′ examples to aid teaching and learning - lists of key terms to aid revision and further reading to enhance students′ understanding - an improved text design making the book easier to navigate - a companion website with answers to the labs and exercises, along with additional data sets and powerpoint slides




Introduction to Structural Equation Modeling Using IBM SPSS Statistics and Amos


Book Description

This comprehensive Second Edition offers readers a complete guide to carrying out research projects involving structural equation modeling (SEM). Updated to include extensive analysis of AMOS′ graphical interface, a new chapter on latent curve models and detailed explanations of the structural equation modeling process, this second edition is the ideal guide for those new to the field. The book includes: Learning objectives, key concepts and questions for further discussion in each chapter. Helpful diagrams and screenshots to expand on concepts covered in the texts. Real life examples from a variety of disciplines to show how SEM is applied in real research contexts. Exercises for each chapter on an accompanying companion website. A new glossary. Assuming no previous experience of the subject, and a minimum of mathematical knowledge, this is the ideal guide for those new to SEM and an invaluable companion for students taking introductory SEM courses in any discipline. Niels J. Blunch was formerly in the Department of Marketing and Statistics at the University of Aarhus, Denmark




SPSS Survival Manual


Book Description

The SPSS Survival Manual throws a lifeline to students and researchers grappling with this powerful data analysis software. In her bestselling manual, Julie Pallant guides you through the entire research process, helping you choose the right data analysis technique for your project. From the formulation of research questions, to the design of the study and analysis of data, to reporting the results, Julie discusses basic through to advanced statistical techniques. She outlines each technique clearly, providing step by step procedures for performing your analysis, a detailed guide to interpreting data output and examples of how to present your results in a report. For both beginners and experienced users in psychology, sociology, health sciences, medicine, education, business and related disciplines, the SPSS Survival Manual is an essential text. Illustrated with screen grabs, examples of output and tips, it is supported by a website with sample data and guidelines on report writing. This seventh edition is fully revised and updated to accommodate changes to IBM SPSS Statistics procedures, screens and output. 'An excellent introduction to using SPSS for data analysis. It provides a self-contained resource itself, with more than simply (detailed and clear) step-by-step descriptions of statistical procedures in SPSS. There is also a wealth of tips and advice, and for each statistical technique a brief, but consistently reliable, explanation is provided.' - Associate Professor George Dunbar, University of Warwick 'This book is recommended as ESSENTIAL to all students completing research projects - minor and major.' - Dr John Roodenburg, Monash University A website with support materials for students and lecturers is available at www.spss.allenandunwin.com




Multilevel and Longitudinal Modeling with IBM SPSS


Book Description

This book demonstrates how to use multilevel and longitudinal modeling techniques available in the IBM SPSS mixed-effects program (MIXED). Annotated screen shots provide readers with a step-by-step understanding of each technique and navigating the program. Readers learn how to set up, run, and interpret a variety of models. Diagnostic tools, data management issues, and related graphics are introduced throughout. Annotated syntax is also available for those who prefer this approach. Extended examples illustrate the logic of model development to show readers the rationale of the research questions and the steps around which the analyses are structured. The data used in the text and syntax examples are available at www.routledge.com/9780415817110. Highlights of the new edition include: Updated throughout to reflect IBM SPSS Version 21. Further coverage of growth trajectories, coding time-related variables, covariance structures, individual change and longitudinal experimental designs (Ch.5). Extended discussion of other types of research designs for examining change (e.g., regression discontinuity, quasi-experimental) over time (Ch.6). New examples specifying multiple latent constructs and parallel growth processes (Ch. 7). Discussion of alternatives for dealing with missing data and the use of sample weights within multilevel data structures (Ch.1). The book opens with the conceptual and methodological issues associated with multilevel and longitudinal modeling, followed by a discussion of SPSS data management techniques which facilitate working with multilevel, longitudinal, and cross-classified data sets. Chapters 3 and 4 introduce the basics of multilevel modeling: developing a multilevel model, interpreting output, and trouble-shooting common programming and modeling problems. Models for investigating individual and organizational change are presented in chapters 5 and 6, followed by models with multivariate outcomes in chapter 7. Chapter 8 provides an illustration of multilevel models with cross-classified data structures. The book concludes with ways to expand on the various multilevel and longitudinal modeling techniques and issues when conducting multilevel analyses. It's ideal for courses on multilevel and longitudinal modeling, multivariate statistics, and research design taught in education, psychology, business, and sociology.




Interpreting Quantitative Data with IBM SPSS Statistics


Book Description

The Second Edition of Interpreting Quantitative Data with IBM SPSS Statistics is an invaluable resource for students analyzing qualitative data with IBM SPSS Statistics for the first time. The book clearly sets out a range of statistical techniques and their common applications, explaining their logic and links to the research process. It also shows how IBM SPSS Statistics can be used as a tool to aid analysis. Key Features of the Second Edition: * New chapters on ANOVA Factor Analysis and General Multilinear Model * IBM SPSS Statistics lab sessions following each chapter which demonstrate how IBM SPSS Statistics can be used in practice * Sets of exercises and 'real-life' examples to aid teaching and learning * Lists of key terms and further reading to ...




SPSS for Intermediate Statistics


Book Description

Intended as a supplement for intermediate statistics courses taught in departments of psychology, education, business, and other health, behavioral, and social sciences.




Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences


Book Description

Using and Interpreting Statistics in the Social, Behavioral, and Health Sciences is designed to be paired with any undergraduate introduction to research methods text used by students in a variety of disciplines. It introduces students to statistics at the conceptual level—examining the meaning of statistics, and why researchers use a particular statistical technique, rather than computational skills. Focusing on descriptive statistics, and some more advanced topics such as tests of significance, measures of association, and regression analysis, this brief, inexpensive text is the perfect companion to help students who have not yet taken an introductory statistics course or are confused by the statistics used in the articles they are reading.