From Protein Structure to Function with Bioinformatics


Book Description

Proteins lie at the heart of almost all biological processes and have an incredibly wide range of activities. Central to the function of all proteins is their ability to adopt, stably or sometimes transiently, structures that allow for interaction with other molecules. An understanding of the structure of a protein can therefore lead us to a much improved picture of its molecular function. This realisation has been a prime motivation of recent Structural Genomics projects, involving large-scale experimental determination of protein structures, often those of proteins about which little is known of function. These initiatives have, in turn, stimulated the massive development of novel methods for prediction of protein function from structure. Since model structures may also take advantage of new function prediction algorithms, the first part of the book deals with the various ways in which protein structures may be predicted or inferred, including specific treatment of membrane and intrinsically disordered proteins. A detailed consideration of current structure-based function prediction methodologies forms the second part of this book, which concludes with two chapters, focusing specifically on case studies, designed to illustrate the real-world application of these methods. With bang up-to-date texts from world experts, and abundant links to publicly available resources, this book will be invaluable to anyone who studies proteins and the endlessly fascinating relationship between their structure and function.




Protein Conformational Dynamics


Book Description

This book discusses how biological molecules exert their function and regulate biological processes, with a clear focus on how conformational dynamics of proteins are critical in this respect. In the last decade, the advancements in computational biology, nuclear magnetic resonance including paramagnetic relaxation enhancement, and fluorescence-based ensemble/single-molecule techniques have shown that biological molecules (proteins, DNAs and RNAs) fluctuate under equilibrium conditions. The conformational and energetic spaces that these fluctuations explore likely contain active conformations that are critical for their function. More interestingly, these fluctuations can respond actively to external cues, which introduces layers of tight regulation on the biological processes that they dictate. A growing number of studies have suggested that conformational dynamics of proteins govern their role in regulating biological functions, examples of this regulation can be found in signal transduction, molecular recognition, apoptosis, protein / ion / other molecules translocation and gene expression. On the experimental side, the technical advances have offered deep insights into the conformational motions of a number of proteins. These studies greatly enrich our knowledge of the interplay between structure and function. On the theoretical side, novel approaches and detailed computational simulations have provided powerful tools in the study of enzyme catalysis, protein / drug design, protein / ion / other molecule translocation and protein folding/aggregation, to name but a few. This work contains detailed information, not only on the conformational motions of biological systems, but also on the potential governing forces of conformational dynamics (transient interactions, chemical and physical origins, thermodynamic properties). New developments in computational simulations will greatly enhance our understanding of how these molecules function in various biological events.




Heme Peroxidases


Book Description

Heme peroxidases are widely distributed in biological systems and are involved in a wide range of processes essential for life. This book provides a comprehensive single source of information on the various aspects of heme peroxidase structure, function and mechanism of action. Chapters written and edited by worldwide experts span a range of heme peroxidases from plants, yeast, bacteria and mammals. Discussed functions of peroxidases range from cell wall synthesis, synthesis of prostaglandins, role in drug suppression of tuberculosis, and antibacterial activity. Included is a discussion of peroxidases that also act as catalases and oxygenases. Heme Peroxidases serves as an essential text for those working in industry and academia in biochemistry and metallobiology.




Structural Bioinformatics: Applications in Preclinical Drug Discovery Process


Book Description

This book reviews the advances and challenges of structure-based drug design in the preclinical drug discovery process, addressing various diseases, including malaria, tuberculosis and cancer. Written by internationally recognized researchers, this edited book discusses how the application of the various in-silico techniques, such as molecular docking, virtual screening, pharmacophore modeling, molecular dynamics simulations, and residue interaction networks offers insights into pharmacologically active novel molecular entities. It presents a clear concept of the molecular mechanism of different drug targets and explores methods to help understand drug resistance. In addition, it includes chapters dedicated to natural-product- derived medicines, combinatorial drug discovery, the CryoEM technique for structure-based drug design and big data in drug discovery. The book offers an invaluable resource for graduate and postgraduate students, as well as for researchers in academic and industrial laboratories working in the areas of chemoinformatics, medicinal and pharmaceutical chemistry and pharmacoinformatics.




Molecular Microbial Ecology Manual


Book Description

For a long time microbial ecology has been developed as a distinct field within Ecology. In spite of the important role of microorganisms in the environment, this group of 'invisible' organisms remained unaccessable to other ecologists. Detection and identification of microorganisms remain largely dependent on isolation techniques and characterisation of pure cul tures. We now realise that only a minor fraction of the microbial com munity can be cultivated. As a result of the introduction of molecular methods, microbes can now be detected and identified at the DNA/RNA level in their natural environment. This has opened a new field in ecology: Molecular Microbial Ecology. In the present manual we aim to introduce the microbial ecologist to a selected number of current molecular techniques that are relevant in micro bial ecology. The first edition of the manual contains 33 chapters and an equal number of additional chapters will be added this year. Since the field of molecular ecology is in a continuous progress, we aim to update and extend the Manual regularly and will invite anyone to depo sit their new protocols in full detail in the next edition of this Manual. We hope this book finds its place where it was born: at the lab bench! Antoon D.L. Akkermans, Jan Dirk van Elsas and Frans J. de Bruijn March 1995 Molecular Microbial Ecology Manual 1.3.6: 1-8, 1996. © 1996 Kluwer Academic Publishers.




FRET - Förster Resonance Energy Transfer


Book Description

FRET – Förster Resonance Energy Transfer Meeting the need for an up-to-date and detailed primer on all aspects of the topic, this ready reference reflects the incredible expansion in the application of FRET and its derivative techniques over the past decade, especially in the biological sciences. This wide diversity is equally mirrored in the range of expert contributors. The book itself is clearly subdivided into four major sections. The first provides some background, theory, and key concepts, while the second section focuses on some common FRET techniques and applications, such as in vitro sensing and diagnostics, the determination of protein, peptide and other biological structures, as well as cellular biosensing with genetically encoded fluorescent indicators. The third section looks at recent developments, beginning with the use of fluorescent proteins, followed by a review of FRET usage with semiconductor quantum dots, along with an overview of multistep FRET. The text concludes with a detailed and greatly updated series of supporting tables on FRET pairs and Förster distances, together with some outlook and perspectives on FRET. Written for both the FRET novice and for the seasoned user, this is a must-have resource for office and laboratory shelves.




The Glutamate Receptors


Book Description

This insightful and comprehensive book covers nearly every aspect of glutamate receptor structure and function for the working researcher and student. It condenses two previous landmark volumes into one easily accessible volume, and covers the extraordinary research and significant developments in the decade since the previous books were published. This includes the central role glutamate receptors play in neurotransmission.




Bioelectronics


Book Description

Medicine, chemistry, physics and engineering stand poised to benefit within the next few years from the ingenuity of complex biological structures invented and perfected by nature over millions of years. This book provides both researchers and engineers as well as students of all the natural sciences a vivid insight into the world of bioelectronics and nature's own nanotechnological treasure chamber.




A Structural Perspective on Respiratory Complex I


Book Description

The book contains chapters written by leaders in the research on the structure and function of respiratory complex I. It will provide a concise and authoritative summary of the current knowledge on complex I of respiratory chains. This enzyme is central to energy metabolism and is implicated in many human neurodegenerative diseases, as well as in aging. Until recently it was poorly understood on a structural level, and this book will provide a timely reference resource. Such a book was not published previously. The last time a minireview series on complex I were published was in 2001, and since then complex I field changed quite dramatically.




The Chemistry of Sulphinic Acids, Esters and Their Derivatives


Book Description

The series "The Chemistry of Functional Groups" is planned to cover, in each volume, all aspects of the chemistry of one of the important functional groups in organic chemistry.