Intrinsically Disordered Proteins Studied by NMR Spectroscopy


Book Description

This book discusses the paradigm-shifting phenomenon of intrinsically disordered proteins (IDPs) and hybrid proteins containing ordered domains and functional IDP regions (IDPRs). The properties of IDPs and IDPRs are highly complementary to those deriving from the presence of a unique and well-defined three-dimensional fold. Ignored for a long time in high-resolution studies of proteins, intrinsic protein disorder is now recognized as one of the key features for a large variety of cellular functions, where structural flexibility presents a functional advantage in terms of binding plasticity and promiscuity and this volume explores this exciting new research. Recent progress in the field has radically changed our perspective to study IDPs through NMR: increasingly complex IDPs can now be characterized, a wide range of observables can be determined reporting on the structural and dynamic properties, computational methods to describe the structure and dynamics are in continuous development and IDPs can be studied in environments as complex as whole cells. This volume communicates the new exciting possibilities offered by NMR and presents open questions to foster further developments. Intrinsically Disordered Proteins Studied by NMR Spectroscopy provides a snapshot to researchers entering the field as well as providing a current overview for more experienced scientists in related areas.




Intrinsically Disordered Protein Analysis


Book Description

Over the past decade, there has been an explosive development of research of intrinsically disordered proteins (IDPs), which are also known as unfolded proteins. Structural biologists now recognize that the functional diversity provided by disordered regions complements the functional repertoire of ordered protein regions. In Intrinsically Disordered Protein Analysis :Methods and Experimental Tools, expert researchers explore the high abundance of IDPs in various organisms, their unique structural features, numerous functions, and crucial associations with different diseases. Volume 1 includes sections on assessing IDPs in the living cell,NMR based techniques, vibrational spectroscopy, and other spectroscopic techniques. Written in the highly successful Methods in Molecular BiologyTM series format, the chapters include the kind of detailed description and implementation advice that is crucial for getting optimal results in the laboratory. Thorough and intuitive, Intrinsically Disordered Protein Analysis: Methods and Experimental Tools helps scientists further their investigations of these fascinating and dynamic molecules.




Protein NMR Spectroscopy


Book Description

Nuclear Magnetic Resonance (NMR) spectroscopy, a physical phenomenon based upon the magnetic properties of certain atomic nuclei, has found a wide range of applications in life sciences over recent decades. This up-to-date volume covers NMR techniques and their application to proteins, with a focus on practical details. Providing newcomers to NMR with practical guidance to carry out successful experiments with proteins and analyze the resulting spectra, those familiar with the chemical applications of NMR will also find it useful in understanding the special requirements of protein NMR.




Biological NMR Spectroscopy


Book Description

This book presents a critical assessment of progress on the use of nuclear magnetic resonance spectroscopy to determine the structure of proteins, including brief reviews of the history of the field along with coverage of current clinical and in vivo applications. The book, in honor of Oleg Jardetsky, one of the pioneers of the field, is edited by two of the most highly respected investigators using NMR, and features contributions by most of the leading workers in the field. It will be valued as a landmark publication that presents the state-of-the-art perspectives regarding one of today's most important technologies.




Instrumental Analysis of Intrinsically Disordered Proteins


Book Description

Instrumental techniques for analyzing intrinsically disordered proteins The recently recognized phenomenon of protein intrinsic disorder is gaining significant interest among researchers, especially as the number of proteins and protein domains that have been shown to be intrinsically disordered rapidly grows. The first reference to tackle this little-documented area, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation provides researchers with a much-needed, comprehensive summary of recent achievements in the methods for structural characterization of intrinsically disordered proteins (IDPs). Chapters discuss: Assessment of IDPs in the living cell Spectroscopic techniques for the analysis of IDPs, including NMR and EPR spectroscopies, FTIR, circular dichroism, fluorescence spectroscopy, vibrational methods, and single-molecule analysis Single-molecule techniques applied to the study of IDPs Assessment of IDP size and shape Tools for the analysis of IDP conformational stability Mass spectrometry Approaches for expression and purification of IDPs With contributions from an international selection of leading researchers, Instrumental Analysis of Intrinsically Disordered Proteins: Assessing Structure and Conformation fills an important need in a rapidly growing field. It is required reading for biochemists, biophysicists, molecular biologists, geneticists, cell biologists, physiologists, and specialists in drug design and development, proteomics, and molecular medicine with an interest in proteins and peptides.




Intrinsically Disordered Proteins


Book Description

The edition details methods to study intrinsically disordered proteins (IDPs) including recent topics such as extremely high-affinity disordered complexes, kinetics that evade established concepts, liquid-liquid phase separation, and novel disorder-driven allosteric mechanisms. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, Intrinsically Disordered Proteins: Methods and Protocols aims to help scientists with different backgrounds to further their investigations into these fascinating and dynamic molecules. Chapter 24 is available open access under a CC BY 4.0 license via link.springer.com. Chapters “40 and 42 ” are available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.




Structural Biology in Drug Discovery


Book Description

With the most comprehensive and up-to-date overview of structure-based drug discovery covering both experimental and computational approaches, Structural Biology in Drug Discovery: Methods, Techniques, and Practices describes principles, methods, applications, and emerging paradigms of structural biology as a tool for more efficient drug development. Coverage includes successful examples, academic and industry insights, novel concepts, and advances in a rapidly evolving field. The combined chapters, by authors writing from the frontlines of structural biology and drug discovery, give readers a valuable reference and resource that: Presents the benefits, limitations, and potentiality of major techniques in the field such as X-ray crystallography, NMR, neutron crystallography, cryo-EM, mass spectrometry and other biophysical techniques, and computational structural biology Includes detailed chapters on druggability, allostery, complementary use of thermodynamic and kinetic information, and powerful approaches such as structural chemogenomics and fragment-based drug design Emphasizes the need for the in-depth biophysical characterization of protein targets as well as of therapeutic proteins, and for a thorough quality assessment of experimental structures Illustrates advances in the field of established therapeutic targets like kinases, serine proteinases, GPCRs, and epigenetic proteins, and of more challenging ones like protein-protein interactions and intrinsically disordered proteins




In-cell NMR Spectroscopy


Book Description

In-cell NMR spectroscopy is a relatively new field. Despite its short history, recent in-cell NMR-related publications in major journals indicate that this method is receiving significant general attention. This book provides the first informative work specifically focused on in-cell NMR. It details the historical background of in-cell NMR, host cells for in-cell NMR studies, methods for in-cell biological techniques and NMR spectroscopy, applications, and future perspectives. Researchers in biochemistry, biophysics, molecular biology, cell biology, structural biology as well as NMR analysts interested in biological applications will all find this book valuable reading.




Structure and Function of Intrinsically Disordered Proteins


Book Description

The existence and functioning of intrinsically disordered proteins (IDPs) challenge the classical structure-function paradigm that equates function with a well-defined 3D structure. Uncovering the disordered complement of proteomes and understanding their functioning can extend the structure-function paradigm to herald new breakthroughs in drug dev




Fuzziness


Book Description

Detailed characterization of fuzzy interactions will be of central importance for understanding the diverse biological functions of intrinsically disordered proteins in complex eukaryotic signaling networks. In this volume, Peter Tompa and Monika Fuxreiter have assembled a series of papers that address the issue of fuzziness in molecular interactions. These papers provide a broad overview of the phenomenon of fuzziness and provide compelling examples of the central role played by fuzzy interactions in regulation of cellular signaling processes and in viral infectivity. These contributions summarize the current state of knowledge in this new field and will undoubtedly stimulate future research that will further advance our understanding of fuzziness and its role in biomolecular interactions.