INTRODUCCIÓN AL MÉTODO DE LOS ELEMENTOS FINITOS


Book Description

Este libro presenta una introducción al Método de Elementos Finitos (MEF) y fundamentalmente está dirigido a estudiantes, ingenieros y científicos que conocen el cálculo de estructuras. Se parte de la reformulación matricial del método directo de la rigidez con objeto de que se comprenda el enorme potencial que supone la introducción de la idea de aproximación en la formulación débil del problema de barras. La coincidencia de resultados entre la formulación clásica inicial y la del MEF al utilizar funciones de forma lineales y los polinomios de Hermite, permite abordar más fácilmente su formulación general como procedimiento para obtener soluciones aproximadas de las ecuaciones diferenciales en derivadas parciales.




IV Latin American Congress on Biomedical Engineering 2007, Bioengineering Solutions for Latin America Health, September 24th-28th, 2007, Margarita Island, Venezuela


Book Description

The IV Latin American Congress on Biomedical Engineering, CLAIB2007, corresponds to the triennial congress for the Regional Bioengineering Council for Latin America (CORAL), it is supported by the International Federation for Medical and Biological Engineering (IFMBE) and the Engineering in Medicine, Biology Society (IEEE-EMBS). This time the Venezuela Society of Bioengineering (SOVEB) organized the conference, with the slogan Bioengineering solution for Latin America health.




El método de los elementos finitos


Book Description

Este libro hace una presentación del método de los elementos finitos como técnica para la solución de ecuaciones diferenciales parciales (EDP) de tipo elíptico, parabólico e hiperbólico. El desarrollo del texto incluye tanto una formulación matemática consistente, como aplicaciones clásicas en el campo de la transferencia de calor, la elasticidad y la mecánica de fluidos. La obra inicia con una breve exposición del método de los residuos ponderados y luego ilustra su aplicación en la solución con elementos finitos de ecuaciones diferenciales. A continuación, se presentan planteamientos con elementos de orden superior, así como consideraciones para el planteamiento de soluciones con condensación estática y elementos jerárquicos. Posteriormente se tratan las EDP elípticas, tanto para el caso de problemas escalares (problemas de conducción de calor) como para problemas vectoriales (elasticidad plana). La construcción de aproximaciones para problemas en estado transitorio es revisada en la siguiente sección, así como el análisis de las condiciones de estabilidad requeridas. De igual forma, se analiza la formulación de elementos finitos para problemas con términos de transporte y se explica detalladamente el origen y la implementación de la técnica de estabilización Streamline Upwind Petrov-Galerkin (SUPG). En la última sección se expone un breve estudio sobre la construcción de soluciones para EDP no lineales.




The Fractional Laplacian


Book Description

The fractional Laplacian, also called the Riesz fractional derivative, describes an unusual diffusion process associated with random excursions. The Fractional Laplacian explores applications of the fractional Laplacian in science, engineering, and other areas where long-range interactions and conceptual or physical particle jumps resulting in an irregular diffusive or conductive flux are encountered. Presents the material at a level suitable for a broad audience of scientists and engineers with rudimentary background in ordinary differential equations and integral calculus Clarifies the concept of the fractional Laplacian for functions in one, two, three, or an arbitrary number of dimensions defined over the entire space, satisfying periodicity conditions, or restricted to a finite domain Covers physical and mathematical concepts as well as detailed mathematical derivations Develops a numerical framework for solving differential equations involving the fractional Laplacian and presents specific algorithms accompanied by numerical results in one, two, and three dimensions Discusses viscous flow and physical examples from scientific and engineering disciplines Written by a prolific author well known for his contributions in fluid mechanics, biomechanics, applied mathematics, scientific computing, and computer science, the book emphasizes fundamental ideas and practical numerical computation. It includes original material and novel numerical methods.




Finite Element Modeling and Simulation with ANSYS Workbench


Book Description

Learn Basic Theory and Software Usage from a Single Volume Finite Element Modeling and Simulation with ANSYS Workbench combines finite element theory with real-world practice. Providing an introduction to finite element modeling and analysis for those with no prior experience, and written by authors with a combined experience of 30 years teaching the subject, this text presents FEM formulations integrated with relevant hands-on applications using ANSYS Workbench for finite element analysis (FEA). Incorporating the basic theories of FEA and the use of ANSYS Workbench in the modeling and simulation of engineering problems, the book also establishes the FEM method as a powerful numerical tool in engineering design and analysis. Include FEA in Your Design and Analysis of Structures Using ANSYS Workbench The authors reveal the basic concepts in FEA using simple mechanics problems as examples, and provide a clear understanding of FEA principles, element behaviors, and solution procedures. They emphasize correct usage of FEA software, and techniques in FEA modeling and simulation. The material in the book discusses one-dimensional bar and beam elements, two-dimensional plane stress and plane strain elements, plate and shell elements, and three-dimensional solid elements in the analyses of structural stresses, vibrations and dynamics, thermal responses, fluid flows, optimizations, and failures. Contained in 12 chapters, the text introduces ANSYS Workbench through detailed examples and hands-on case studies, and includes homework problems and projects using ANSYS Workbench software that are provided at the end of each chapter. Covers solid mechanics and thermal/fluid FEA Contains ANSYS Workbench geometry input files for examples and case studies Includes two chapters devoted to modeling and solution techniques, design optimization, fatigue, and buckling failure analysis Provides modeling tips in case studies to provide readers an immediate opportunity to apply the skills they learn in a problem-solving context Finite Element Modeling and Simulation with ANSYS Workbench benefits upper-level undergraduate students in all engineering disciplines, as well as researchers and practicing engineers who use the finite element method to analyze structures.




Modeling and Simulation of Mineral Processing Systems


Book Description

Dr. R. Peter King covers the field of quantitative modeling of mineral processing equipment and the use of these models to simulate the actual behavior of ore dressing and coal washing as they are configured to work in industrial practice. The material is presented in a pedagogical style that is particularly suitable for readers who wish to learn the wide variety of modeling methods that have evolved in this field. The models vary widely from one unit type to another. As a result each model is described in some detail. Wherever possible model structure is related to the underlying physical processes that govern the behaviour of particulate material in the processing equipment. Predictive models are emphasised throughout so that, when combined, they can be used to simulate the operation of complex mineral processing flowsheets. The development of successful simulation techniques is a major objective of the work that is covered in the text. - Covers all aspects of modeling and simulation - Provides all necessary tools to put the theory into practice




Theory of Ordinary Differential Equations


Book Description

The prerequisite for the study of this book is a knowledge of matrices and the essentials of functions of a complex variable. It has been developed from courses given by the authors and probably contains more material than will ordinarily be covered in a one-year course. It is hoped that the book will be a useful text in the application of differential equations as well as for the pure mathematician.




Grain Drying


Book Description

Drying grain is necessary for proper storage, handling and processing; the methods used for drying grain have an important influence on quality and the overall economics of the process. This book provides all the tools needed for effective grain drying, inculding mathematical theory, tabulated data on the physical and thermal properties of grains, and more.




Von Karman Evolution Equations


Book Description

In the study of mathematical models that arise in the context of concrete - plications, the following two questions are of fundamental importance: (i) we- posedness of the model, including existence and uniqueness of solutions; and (ii) qualitative properties of solutions. A positive answer to the ?rst question, - ing of prime interest on purely mathematical grounds, also provides an important test of the viability of the model as a description of a given physical phenomenon. An answer or insight to the second question provides a wealth of information about the model, hence about the process it describes. Of particular interest are questions related to long-time behavior of solutions. Such an evolution property cannot be v- i?ed empirically, thus any in a-priori information about the long-time asymptotics can be used in predicting an ultimate long-time response and dynamical behavior of solutions. In recent years, this set of investigations has attracted a great deal of attention. Consequent efforts have then resulted in the creation and infusion of new methods and new tools that have been responsible for carrying out a successful an- ysis of long-time behavior of several classes of nonlinear PDEs.




Finite Element Modeling and Simulation with ANSYS Workbench, Second Edition


Book Description

Finite Element Modeling and Simulation with ANSYS Workbench 18, Second Edition, combines finite element theory with real-world practice. Providing an introduction to finite element modeling and analysis for those with no prior experience, and written by authors with a combined experience of 30 years teaching the subject, this text presents FEM formulations integrated with relevant hands-on instructions for using ANSYS Workbench 18. Incorporating the basic theories of FEA, simulation case studies, and the use of ANSYS Workbench in the modeling of engineering problems, the book also establishes the finite element method as a powerful numerical tool in engineering design and analysis. Features Uses ANSYS WorkbenchTM 18, which integrates the ANSYS SpaceClaim Direct ModelerTM into common simulation workflows for ease of use and rapid geometry manipulation, as the FEA environment, with full-color screen shots and diagrams. Covers fundamental concepts and practical knowledge of finite element modeling and simulation, with full-color graphics throughout. Contains numerous simulation case studies, demonstrated in a step-by-step fashion. Includes web-based simulation files for ANSYS Workbench 18 examples. Provides analyses of trusses, beams, frames, plane stress and strain problems, plates and shells, 3-D design components, and assembly structures, as well as analyses of thermal and fluid problems.