Book Description
Focuses on a few of the important clustering algorithms in the context of information retrieval.
Author : Jacob Kogan
Publisher : Cambridge University Press
Page : 228 pages
File Size : 37,55 MB
Release : 2007
Category : Computers
ISBN : 9780521617932
Focuses on a few of the important clustering algorithms in the context of information retrieval.
Author : Luc T. Wille
Publisher : Springer Science & Business Media
Page : 369 pages
File Size : 43,1 MB
Release : 2013-03-09
Category : Science
ISBN : 3662089688
This book provides a unique insight into the latest breakthroughs in a consistent manner, at a level accessible to undergraduates, yet with enough attention to the theory and computation to satisfy the professional researcher Statistical physics addresses the study and understanding of systems with many degrees of freedom. As such it has a rich and varied history, with applications to thermodynamics, magnetic phase transitions, and order/disorder transformations, to name just a few. However, the tools of statistical physics can be profitably used to investigate any system with a large number of components. Thus, recent years have seen these methods applied in many unexpected directions, three of which are the main focus of this volume. These applications have been remarkably successful and have enriched the financial, biological, and engineering literature. Although reported in the physics literature, the results tend to be scattered and the underlying unity of the field overlooked.
Author : Roman Vershynin
Publisher : Cambridge University Press
Page : 299 pages
File Size : 40,44 MB
Release : 2018-09-27
Category : Business & Economics
ISBN : 1108415199
An integrated package of powerful probabilistic tools and key applications in modern mathematical data science.
Author : Christophe Giraud
Publisher : CRC Press
Page : 410 pages
File Size : 46,83 MB
Release : 2021-08-25
Category : Computers
ISBN : 1000408353
Praise for the first edition: "[This book] succeeds singularly at providing a structured introduction to this active field of research. ... it is arguably the most accessible overview yet published of the mathematical ideas and principles that one needs to master to enter the field of high-dimensional statistics. ... recommended to anyone interested in the main results of current research in high-dimensional statistics as well as anyone interested in acquiring the core mathematical skills to enter this area of research." —Journal of the American Statistical Association Introduction to High-Dimensional Statistics, Second Edition preserves the philosophy of the first edition: to be a concise guide for students and researchers discovering the area and interested in the mathematics involved. The main concepts and ideas are presented in simple settings, avoiding thereby unessential technicalities. High-dimensional statistics is a fast-evolving field, and much progress has been made on a large variety of topics, providing new insights and methods. Offering a succinct presentation of the mathematical foundations of high-dimensional statistics, this new edition: Offers revised chapters from the previous edition, with the inclusion of many additional materials on some important topics, including compress sensing, estimation with convex constraints, the slope estimator, simultaneously low-rank and row-sparse linear regression, or aggregation of a continuous set of estimators. Introduces three new chapters on iterative algorithms, clustering, and minimax lower bounds. Provides enhanced appendices, minimax lower-bounds mainly with the addition of the Davis-Kahan perturbation bound and of two simple versions of the Hanson-Wright concentration inequality. Covers cutting-edge statistical methods including model selection, sparsity and the Lasso, iterative hard thresholding, aggregation, support vector machines, and learning theory. Provides detailed exercises at the end of every chapter with collaborative solutions on a wiki site. Illustrates concepts with simple but clear practical examples.
Author : Guojun Gan
Publisher : SIAM
Page : 430 pages
File Size : 48,77 MB
Release : 2020-11-10
Category : Mathematics
ISBN : 1611976332
Data clustering, also known as cluster analysis, is an unsupervised process that divides a set of objects into homogeneous groups. Since the publication of the first edition of this monograph in 2007, development in the area has exploded, especially in clustering algorithms for big data and open-source software for cluster analysis. This second edition reflects these new developments, covers the basics of data clustering, includes a list of popular clustering algorithms, and provides program code that helps users implement clustering algorithms. Data Clustering: Theory, Algorithms and Applications, Second Edition will be of interest to researchers, practitioners, and data scientists as well as undergraduate and graduate students.
Author : David B. Skillicorn
Publisher : Springer Science & Business Media
Page : 109 pages
File Size : 12,42 MB
Release : 2012-09-24
Category : Computers
ISBN : 3642333982
High-dimensional spaces arise as a way of modelling datasets with many attributes. Such a dataset can be directly represented in a space spanned by its attributes, with each record represented as a point in the space with its position depending on its attribute values. Such spaces are not easy to work with because of their high dimensionality: our intuition about space is not reliable, and measures such as distance do not provide as clear information as we might expect. There are three main areas where complex high dimensionality and large datasets arise naturally: data collected by online retailers, preference sites, and social media sites, and customer relationship databases, where there are large but sparse records available for each individual; data derived from text and speech, where the attributes are words and so the corresponding datasets are wide, and sparse; and data collected for security, defense, law enforcement, and intelligence purposes, where the datasets are large and wide. Such datasets are usually understood either by finding the set of clusters they contain or by looking for the outliers, but these strategies conceal subtleties that are often ignored. In this book the author suggests new ways of thinking about high-dimensional spaces using two models: a skeleton that relates the clusters to one another; and boundaries in the empty space between clusters that provide new perspectives on outliers and on outlying regions. The book will be of value to practitioners, graduate students and researchers.
Author : Avrim Blum
Publisher : Cambridge University Press
Page : 433 pages
File Size : 31,64 MB
Release : 2020-01-23
Category : Computers
ISBN : 1108617360
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Author : Jure Leskovec
Publisher : Cambridge University Press
Page : 480 pages
File Size : 37,11 MB
Release : 2014-11-13
Category : Computers
ISBN : 1107077230
Now in its second edition, this book focuses on practical algorithms for mining data from even the largest datasets.
Author : Michael R. Anderberg
Publisher : Academic Press
Page : 376 pages
File Size : 33,28 MB
Release : 2014-05-10
Category : Mathematics
ISBN : 1483191397
Cluster Analysis for Applications deals with methods and various applications of cluster analysis. Topics covered range from variables and scales to measures of association among variables and among data units. Conceptual problems in cluster analysis are discussed, along with hierarchical and non-hierarchical clustering methods. The necessary elements of data analysis, statistics, cluster analysis, and computer implementation are integrated vertically to cover the complete path from raw data to a finished analysis. Comprised of 10 chapters, this book begins with an introduction to the subject of cluster analysis and its uses as well as category sorting problems and the need for cluster analysis algorithms. The next three chapters give a detailed account of variables and association measures, with emphasis on strategies for dealing with problems containing variables of mixed types. Subsequent chapters focus on the central techniques of cluster analysis with particular reference to computational considerations; interpretation of clustering results; and techniques and strategies for making the most effective use of cluster analysis. The final chapter suggests an approach for the evaluation of alternative clustering methods. The presentation is capped with a complete set of implementing computer programs listed in the Appendices to make the use of cluster analysis as painless and free of mechanical error as is possible. This monograph is intended for students and workers who have encountered the notion of cluster analysis.
Author : Rui Xu
Publisher : John Wiley & Sons
Page : 400 pages
File Size : 26,25 MB
Release : 2008-11-03
Category : Mathematics
ISBN : 0470382783
This is the first book to take a truly comprehensive look at clustering. It begins with an introduction to cluster analysis and goes on to explore: proximity measures; hierarchical clustering; partition clustering; neural network-based clustering; kernel-based clustering; sequential data clustering; large-scale data clustering; data visualization and high-dimensional data clustering; and cluster validation. The authors assume no previous background in clustering and their generous inclusion of examples and references help make the subject matter comprehensible for readers of varying levels and backgrounds.