Robust Computational Techniques for Boundary Layers


Book Description

Current standard numerical methods are of little use in solving mathematical problems involving boundary layers. In Robust Computational Techniques for Boundary Layers, the authors construct numerical methods for solving problems involving differential equations that have non-smooth solutions with singularities related to boundary layers. They pres




Introduction to Interactive Boundary Layer Theory


Book Description

One of the major achievements in fluid mechanics in the last quarter of the twentieth century has been the development of an asymptotic description of perturbations to boundary layers known generally as 'triple deck theory'. These developments have had a major impact on our understanding of laminar fluid flow, particularly laminar separation. It is also true that the theory rests on three quarters of a century of development of boundary layer theory which involves analysis, experimentation and computation. All these parts go together, and to understand the triple deck it is necessary to understand which problems the triple deck resolves and which computational techniques have been applied. This book presents a unified account of the development of laminar boundary layer theory as a historical study together with a description of the application of the ideas of triple deck theory to flow past a plate, to separation from a cylinder and to flow in channels. The book is intended to provide a graduate level teaching resource as well as a mathematically oriented account for a general reader in applied mathematics, engineering, physics or scientific computation.







Modeling and Computation of Boundary-Layer Flows


Book Description

This book is an introduction to computational fluid dynamics with emphasis on the solution of the boundary-layer equations and the modeling and computation of boundary-layer flows. It also provides readers with a good understanding of the basic principles of fluid dynamics and numerical methods. A variety of readers, including undergraduate and graduate students, teachers or scientists working in aerodynamics or hydrodynamics will find the text interesting. The subjects covered in this book include laminar and , turbulent boundary layers and laminar--turbulent transition. The viscous--inviscid coupling between the boundary layer and the inviscid flow is also addressed. Two-dimensional and three-dimensional incompressible flows are considered. Physical and numerical aspects of boundary-layer flows are described in detail in 12 chapters. A large number of homework problems are included.




Modeling and Computation of Boundary Layer Flows


Book Description

This second edition of the book, Modeling and Computation of Boundary Layer Flows, extends the topic to include compressible flows including the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows that can be used as an introduction to computational fluid dynamics with emphasis on the solution of the boundary-layer equations and the modeling and computation of boundary-layer flows. It also provides readers with a good understanding of the basic principles of fluid dynamics and numerical methods. A variety of readers, including undergraduate and graduate students, teachers or scientists working in aerodynamics or hydrodynamics will find the text interesting. The subjects covered in this book include laminar and, turbulent boundary layers and laminar--turbulent transition. The viscous--inviscid coupling between the boundary layer and the inviscid flow is also addressed. Two-dimensional and three-dimensional incompressible flows are considered. Physical and numerical aspects of boundary-layer flows are described in detail and a large number of homework problems are included. The book is accompanied by computer programs to solve boundary layer equations, the Orr-Sommerfeld equation and to compute transitions. Those programs can be used for classroom work but also for industry applications. Additional programs for three-dimensional flows are available from the first author. TOC:Introduction.- Conservation Equations for Mass and Momentum for Incompressible Flows.- Boundary-Layer Equations for Incompressible Flows.- Two-Dimensional Incompressible Laminar Flows.- Transition in Two-Dimensional Incompressible Flows.- Two-Dimensional Incompressible Turbulent Flows.- Three-Dimensional Incompressible Laminar and Turbulent Flows.- Transition in Three-Dimensional Incompressible Flows.- Interactive Boundary-Layer Theory.- Conservation Equations for Mass, Momentum and Energy.- Two-Dimensional Compressible Laminar Flows.- Two-Dimensional Compressible Turbulent Flows.- An Interactive Boundary-Layer Method for Three-Dimensional Flows.- Transition in Three-Dimensional Compressible Flows




Modeling and Computation of Boundary-Layer Flows


Book Description

This second edition of the book, Modeling and Computation of Boundary-Layer Flows^ extends the topic to include compressible flows. This implies the inclusion of the energy equation and non-constant fluid properties in the continuity and momentum equations. The necessary additions are included in new chapters, leaving the first nine chapters to serve as an introduction to incompressible flows and, therefore, as a platform for the extension. This part of the book can be used for a one semester course as described below. Improvements to the incompressible flows portion of the book include the removal of listings of computer programs and their description, and their incor poration in two CD-ROMs. A listing of the topics incorporated in the CD-ROM is provided before the index. In Chapter 7 there is a more extended discussion of initial conditions for three-dimensional flows, application of the characteristic box to a model problem and discussion of flow separation in three-dimensional laminar flows. There are also changes to Chapter 8, which now includes new sections on Tollmien-Schlichting and cross-flow instabilities and on the predic tion of transition with parabolised stability equations, and Chapter 9 provides a description of the rational behind interactive boundary-layer procedures.




Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2018


Book Description

This volume gathers papers presented at the international conference BAIL, which was held at the University of Strathclyde, Scotland from the 14th to the 22nd of June 2018. The conference gathered specialists in the asymptotic and numerical analysis of problems which exhibit layers and interfaces. Covering a wide range of topics and sharing a wealth of insights, the papers in this volume provide an overview of the latest research into the theory and numerical approximation of problems involving boundary and interior layers.







Boundary and Interior Layers, Computational and Asymptotic Methods - BAIL 2014


Book Description

This volume offers contributions reflecting a selection of the lectures presented at the international conference BAIL 2014, which was held from 15th to 19th September 2014 at the Charles University in Prague, Czech Republic. These are devoted to the theoretical and/or numerical analysis of problems involving boundary and interior layers and methods for solving these problems numerically. The authors are both mathematicians (pure and applied) and engineers, and bring together a large number of interesting ideas. The wide variety of topics treated in the contributions provides an excellent overview of current research into the theory and numerical solution of problems involving boundary and interior layers.