Introduction To Differential Equations, An: Deterministic Modeling, Methods And Analysis (Volume 1)


Book Description

Volume 2: Stochastic Modeling, Methods, and Analysis This is a twenty-first century book designed to meet the challenges of understanding and solving interdisciplinary problems. The book creatively incorporates “cutting-edge” research ideas and techniques at the undergraduate level. The book also is a unique research resource for undergraduate/graduate students and interdisciplinary researchers. It emphasizes and exhibits the importance of conceptual understandings and its symbiotic relationship in the problem solving process. The book is proactive in preparing for the modeling of dynamic processes in various disciplines. It introduces a “break-down-the problem” type of approach in a way that creates “fun” and “excitement”. The book presents many learning tools like “step-by-step procedures (critical thinking)”, the concept of “math” being a language, applied examples from diverse fields, frequent recaps, flowcharts and exercises. Uniquely, this book introduces an innovative and unified method of solving nonlinear scalar differential equations. This is called the “Energy/Lyapunov Function Method”. This is accomplished by adequately covering the standard methods with creativity beyond the entry level differential equations course.




Introduction To Differential Equations, An: Stochastic Modeling, Methods And Analysis (Volume 2)


Book Description

Volume 1: Deterministic Modeling, Methods and Analysis For more than half a century, stochastic calculus and stochastic differential equations have played a major role in analyzing the dynamic phenomena in the biological and physical sciences, as well as engineering. The advancement of knowledge in stochastic differential equations is spreading rapidly across the graduate and postgraduate programs in universities around the globe. This will be the first available book that can be used in any undergraduate/graduate stochastic modeling/applied mathematics courses and that can be used by an interdisciplinary researcher with a minimal academic background. An Introduction to Differential Equations: Volume 2 is a stochastic version of Volume 1 (“An Introduction to Differential Equations: Deterministic Modeling, Methods and Analysis”). Both books have a similar design, but naturally, differ by calculi. Again, both volumes use an innovative style in the presentation of the topics, methods and concepts with adequate preparation in deterministic Calculus. Errata Errata (32 KB)




Random Differential Equations in Scientific Computing


Book Description

This book is a holistic and self-contained treatment of the analysis and numerics of random differential equations from a problem-centred point of view. An interdisciplinary approach is applied by considering state-of-the-art concepts of both dynamical systems and scientific computing. The red line pervading this book is the two-fold reduction of a random partial differential equation disturbed by some external force as present in many important applications in science and engineering. First, the random partial differential equation is reduced to a set of random ordinary differential equations in the spirit of the method of lines. These are then further reduced to a family of (deterministic) ordinary differential equations. The monograph will be of benefit, not only to mathematicians, but can also be used for interdisciplinary courses in informatics and engineering.




Stochastic Versus Deterministic Systems Of Iterative Processes


Book Description

Continuous state dynamic models can be reformulated into discrete state processes. This process generates numerical schemes that lead theoretical iterative schemes. This type of method of stochastic modelling generates three basic problems. First, the fundamental properties of solution, namely, existence, uniqueness, measurability, continuous dependence on system parameters depend on mode of convergence. Second, the basic probabilistic and statistical properties, namely, the behavior of mean, variance, moments of solutions are described as qualitative/quantitative properties of solution process. We observe that the nature of probability distribution or density functions possess the qualitative/quantitative properties of iterative prosses as a special case. Finally, deterministic versus stochastic modelling of dynamic processes is to what extent the stochastic mathematical model differs from the corresponding deterministic model in the absence of random disturbances or fluctuations and uncertainties.Most literature in this subject was developed in the 1950s, and focused on the theory of systems of continuous and discrete-time deterministic; however, continuous-time and its approximation schemes of stochastic differential equations faced the solutions outlined above and made slow progress in developing problems. This monograph addresses these problems by presenting an account of stochastic versus deterministic issues in discrete state dynamic systems in a systematic and unified way.




Applied Stochastic Differential Equations


Book Description

With this hands-on introduction readers will learn what SDEs are all about and how they should use them in practice.




Mathematics for Reliability Engineering


Book Description

Reliability is a fundamental criterium in engineering systems. This book shows innovative concepts and applications of mathematics in solving reliability problems. The contents address in particular the interaction between engineers and mathematicians, as well as the cross-fertilization in the advancement of science and technology. It bridges the gap between theory and practice to aid in practical problem-solving in various contexts.




An Introduction to Computational Stochastic PDEs


Book Description

This book offers a practical presentation of stochastic partial differential equations arising in physical applications and their numerical approximation.




An Introduction to Mathematical Epidemiology


Book Description

The book is a comprehensive, self-contained introduction to the mathematical modeling and analysis of infectious diseases. It includes model building, fitting to data, local and global analysis techniques. Various types of deterministic dynamical models are considered: ordinary differential equation models, delay-differential equation models, difference equation models, age-structured PDE models and diffusion models. It includes various techniques for the computation of the basic reproduction number as well as approaches to the epidemiological interpretation of the reproduction number. MATLAB code is included to facilitate the data fitting and the simulation with age-structured models.




Partial Differential Equations: Modeling, Analysis and Numerical Approximation


Book Description

This book is devoted to the study of partial differential equation problems both from the theoretical and numerical points of view. After presenting modeling aspects, it develops the theoretical analysis of partial differential equation problems for the three main classes of partial differential equations: elliptic, parabolic and hyperbolic. Several numerical approximation methods adapted to each of these examples are analyzed: finite difference, finite element and finite volumes methods, and they are illustrated using numerical simulation results. Although parts of the book are accessible to Bachelor students in mathematics or engineering, it is primarily aimed at Masters students in applied mathematics or computational engineering. The emphasis is on mathematical detail and rigor for the analysis of both continuous and discrete problems.




Mathematics Applied to Deterministic Problems in the Natural Sciences


Book Description

This book addresses the construction, analysis, and intepretation of mathematical models that shed light on significant problems in the physical sciences, with exercises that reinforce, test and extend the reader's understanding. It may be used as an upper level undergraduate or graduate textbook as well as a reference for researchers.