Introduction to Feedback Control Using Design Studies


Book Description

This textbook provides a unique introduction to Feedback Control. It differs from typical control books by presenting principles in the context of three specific design examples: a one link robot arm, a pendulum on a cart, and a satellite attitude problem. These three design examples illustrate the full process of implementing control strategies on mechanical systems. The book begins by introducing the Euler Lagrange method for modeling mechanical systems and discusses computer simulation of these models. Linear design models are developed, specifically transfer function and state space models, that capture the behavior of the system around equilibria. The book then presents three different design strategies for output feedback control: PID control, observer based design, and loopshaping design methods based on the frequency response of the system. Extensive examples show how the controllers are implemented in Simulink, Matlab object oriented code, and Python.




Linear Feedback Control


Book Description

This book discusses analysis and design techniques for linear feedback control systems using MATLAB® software. By reducing the mathematics, increasing MATLAB working examples, and inserting short scripts and plots within the text, the authors have created a resource suitable for almost any type of user. The book begins with a summary of the properties of linear systems and addresses modeling and model reduction issues. In the subsequent chapters on analysis, the authors introduce time domain, complex plane, and frequency domain techniques. Their coverage of design includes discussions on model-based controller designs, PID controllers, and robust control designs. A unique aspect of the book is its inclusion of a chapter on fractional-order controllers, which are useful in control engineering practice.




Feedback Control Theory


Book Description

An excellent introduction to feedback control system design, this book offers a theoretical approach that captures the essential issues and can be applied to a wide range of practical problems. Its explorations of recent developments in the field emphasize the relationship of new procedures to classical control theory, with a focus on single input and output systems that keeps concepts accessible to students with limited backgrounds. The text is geared toward a single-semester senior course or a graduate-level class for students of electrical engineering. The opening chapters constitute a basic treatment of feedback design. Topics include a detailed formulation of the control design program, the fundamental issue of performance/stability robustness tradeoff, and the graphical design technique of loopshaping. Subsequent chapters extend the discussion of the loopshaping technique and connect it with notions of optimality. Concluding chapters examine controller design via optimization, offering a mathematical approach that is useful for multivariable systems.




Introduction to Feedback Control


Book Description

For undergraduate courses in control theory at the junior or senior level. Introduction to Feedback Control, First Edition updates classical control theory by integrating modern optimal and robust control theory using both classical and modern computational tools. This text is ideal for anyone looking for an up-to-date book on Feedback Control. Although there are many textbooks on this subject, authors Li Qiu and Kemin Zhou provide a contemporary view of control theory that includes the development of modern optimal and robust control theory over the past 30 years. A significant portion of well-known classical control theory is maintained, but with consideration of recent developments and available modern computational tools.




Control System Design


Book Description

Introduction to state-space methods covers feedback control; state-space representation of dynamic systems and dynamics of linear systems; frequency-domain analysis; controllability and observability; shaping the dynamic response; more. 1986 edition.




Feedback Systems


Book Description

The essential introduction to the principles and applications of feedback systems—now fully revised and expanded This textbook covers the mathematics needed to model, analyze, and design feedback systems. Now more user-friendly than ever, this revised and expanded edition of Feedback Systems is a one-volume resource for students and researchers in mathematics and engineering. It has applications across a range of disciplines that utilize feedback in physical, biological, information, and economic systems. Karl Åström and Richard Murray use techniques from physics, computer science, and operations research to introduce control-oriented modeling. They begin with state space tools for analysis and design, including stability of solutions, Lyapunov functions, reachability, state feedback observability, and estimators. The matrix exponential plays a central role in the analysis of linear control systems, allowing a concise development of many of the key concepts for this class of models. Åström and Murray then develop and explain tools in the frequency domain, including transfer functions, Nyquist analysis, PID control, frequency domain design, and robustness. Features a new chapter on design principles and tools, illustrating the types of problems that can be solved using feedback Includes a new chapter on fundamental limits and new material on the Routh-Hurwitz criterion and root locus plots Provides exercises at the end of every chapter Comes with an electronic solutions manual An ideal textbook for undergraduate and graduate students Indispensable for researchers seeking a self-contained resource on control theory




Introduction to Feedback Control


Book Description

This survey of input/output controller design is aimed at a mathematical audience. The text provides a rigorous introduction to input/output controller design for linear systems.




Multivariable Feedback Control


Book Description

Multivariable Feedback Control: Analysis and Design, Second Edition presents a rigorous, yet easily readable, introduction to the analysis and design of robust multivariable control systems. Focusing on practical feedback control and not on system theory in general, this book provides the reader with insights into the opportunities and limitations of feedback control. Taking into account the latest developments in the field, this fully revised and updated second edition: * features a new chapter devoted to the use of linear matrix inequalities (LMIs); * presents current results on fundamental performance limitations introduced by RHP-poles and RHP-zeros; * introduces updated material on the selection of controlled variables and self-optimizing control; * provides simple IMC tuning rules for PID control; * covers additional material including unstable plants, the feedback amplifier, the lower gain margin and a clear strategy for incorporating integral action into LQG control; * includes numerous worked examples, exercises and case studies, which make frequent use of Matlab and the new Robust Control toolbox. Multivariable Feedback Control: Analysis and Design, Second Edition is an excellent resource for advanced undergraduate and graduate courses studying multivariable control. It is also an invaluable tool for engineers who want to understand multivariable control, its limitations, and how it can be applied in practice. The analysis techniques and the material on control structure design should prove very useful in the new emerging area of systems biology. Reviews of the first edition: "Being rich in insights and practical tips on controller design, the book should also prove to be very beneficial to industrial control engineers, both as a reference book and as an educational tool." Applied Mechanics Reviews "In summary, this book can be strongly recommended not only as a basic text in multivariable control techniques for graduate and undergraduate students, but also as a valuable source of information for control engineers." International Journal of Adaptive Control and Signal Processing




Feedback Control for Computer Systems


Book Description

How can you take advantage of feedback control for enterprise programming? With this book, author Philipp K. Janert demonstrates how the same principles that govern cruise control in your car also apply to data center management and other enterprise systems. Through case studies and hands-on simulations, you’ll learn methods to solve several control issues, including mechanisms to spin up more servers automatically when web traffic spikes. Feedback is ideal for controlling large, complex systems, but its use in software engineering raises unique issues. This book provides basic theory and lots of practical advice for programmers with no previous background in feedback control. Learn feedback concepts and controller design Get practical techniques for implementing and tuning controllers Use feedback “design patterns” for common control scenarios Maintain a cache’s “hit rate” by automatically adjusting its size Respond to web traffic by scaling server instances automatically Explore ways to use feedback principles with queueing systems Learn how to control memory consumption in a game engine Take a deep dive into feedback control theory




Feedback Control of Dynamic Systems Int


Book Description

This text covers the material that every engineer, and most scientists and prospective managers, needs to know about feedback control, including concepts like stability, tracking, and robustness. Each chapter presents the fundamentals along with comprehensive, worked-out examples, all within a real-world context.