Introduction to l2-invariants


Book Description

This book introduces the reader to the most important concepts and problems in the field of l2-invariants. After some foundational material on group von Neumann algebras, l2-Betti numbers are defined and their use is illustrated by several examples. The text continues with Atiyah's question on possible values of l2-Betti numbers and the relation to Kaplansky's zero divisor conjecture. The general definition of l2-Betti numbers allows for applications in group theory. A whole chapter is dedicated to Lück's approximation theorem and its generalizations. The final chapter deals with l2-torsion, twisted variants and the conjectures relating them to torsion growth in homology. The text provides a self-contained treatment that constructs the required specialized concepts from scratch. It comes with numerous exercises and examples, so that both graduate students and researchers will find it useful for self-study or as a basis for an advanced lecture course.




L2-Invariants: Theory and Applications to Geometry and K-Theory


Book Description

In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.




L2-Invariants: Theory and Applications to Geometry and K-Theory


Book Description

In algebraic topology some classical invariants - such as Betti numbers and Reidemeister torsion - are defined for compact spaces and finite group actions. They can be generalized using von Neumann algebras and their traces, and applied also to non-compact spaces and infinite groups. These new L2-invariants contain very interesting and novel information and can be applied to problems arising in topology, K-Theory, differential geometry, non-commutative geometry and spectral theory. The book, written in an accessible manner, presents a comprehensive introduction to this area of research, as well as its most recent results and developments.




Introduction to Algebraic Topology


Book Description

This textbook provides a succinct introduction to algebraic topology. It follows a modern categorical approach from the beginning and gives ample motivation throughout so that students will find this an ideal first encounter to the field. Topics are treated in a self-contained manner, making this a convenient resource for instructors searching for a comprehensive overview of the area. It begins with an outline of category theory, establishing the concepts of functors, natural transformations, adjunction, limits, and colimits. As a first application, van Kampen's theorem is proven in the groupoid version. Following this, an excursion to cofibrations and homotopy pushouts yields an alternative formulation of the theorem that puts the computation of fundamental groups of attaching spaces on firm ground. Simplicial homology is then defined, motivating the Eilenberg-Steenrod axioms, and the simplicial approximation theorem is proven. After verifying the axioms for singular homology, various versions of the Mayer-Vietoris sequence are derived and it is shown that homotopy classes of self-maps of spheres are classified by degree.The final chapter discusses cellular homology of CW complexes, culminating in the uniqueness theorem for ordinary homology. Introduction to Algebraic Topology is suitable for a single-semester graduate course on algebraic topology. It can also be used for self-study, with numerous examples, exercises, and motivating remarks included.




L2-Invariants


Book Description




Introduction to Vassiliev Knot Invariants


Book Description

A detailed exposition of the theory with an emphasis on its combinatorial aspects.




Mathematical Survey Lectures 1943-2004


Book Description

This collection of survey lectures in mathematics traces the career of Beno Eckmann, whose work ranges across a broad spectrum of mathematical concepts from topology through homological algebra to group theory. One of our most influential living mathematicians, Eckmann has been associated for nearly his entire professional life with the Swiss Federal Technical University (ETH) at Zurich, as student, lecturer, professor, and professor emeritus.




Trends in Contemporary Mathematics


Book Description

The topics faced in this book cover a large spectrum of current trends in mathematics, such as Shimura varieties and the Lang lands program, zonotopal combinatorics, non linear potential theory, variational methods in imaging, Riemann holonomy and algebraic geometry, mathematical problems arising in kinetic theory, Boltzmann systems, Pell's equations in polynomials, deformation theory in non commutative algebras. This work contains a selection of contributions written by international leading mathematicians who were speakers at the "INdAM Day", an initiative born in 2004 to present the most recent developments in contemporary mathematics.




Geometry, Topology, and Dynamics in Negative Curvature


Book Description

The ICM 2010 satellite conference 'Geometry, Topology and Dynamics in Negative Curvature' afforded an excellent opportunity to discuss various aspects of this fascinating interdisciplinary subject in which methods and techniques from geometry, topology, and dynamics often interact in novel and interesting ways. Containing ten survey articles written by some of the leading experts in the field, this proceedings volume provides an overview of important recent developments relating to negative curvature. Topics covered include homogeneous dynamics, harmonic manifolds, the Atiyah Conjecture, counting circles and arcs, and hyperbolic buildings. Each author pays particular attention to the expository aspects, making the book particularly useful for graduate students and mathematicians interested in transitioning from other areas via the common theme of negative curvature.




Riemannian Geometry


Book Description

This book is a compendium of survey lectures presented at a conference on Riemannian Geometry sponsored by The Fields Institute for Research in Mathematical Sciences (Waterloo, Canada) in August 1993. Attended by over 80 participants, the aim of the conference was to promote research activity in Riemannian geometry. A select group of internationally established researchers in the field were invited to discuss and present current developments in a selection of contemporary topics in Riemannian geometry. This volume contains four of the five survey lectures presented at the conference. The book features basic notions of volume and entropy and the difficult and deep relations of these invariants to curvature. It also features $LP$ cohomology, in which the methods combine various areas of mathematics going beyond Riemannian geometry. It covers curvature inequalities from a general point of view, leading to the study of general spaces.