Introduction to Partial Differential Equations and Hilbert Space Methods


Book Description

Easy-to-use text examines principal method of solving partial differential equations, 1st-order systems, computation methods, and much more. Over 600 exercises, with answers for many. Ideal for a 1-semester or full-year course.




Hilbert Space Methods in Partial Differential Equations


Book Description

This graduate-level text opens with an elementary presentation of Hilbert space theory sufficient for understanding the rest of the book. Additional topics include boundary value problems, evolution equations, optimization, and approximation.1979 edition.




Applied Analysis by the Hilbert Space Method


Book Description

Numerous worked examples and exercises highlight this unified treatment. Simple explanations of difficult subjects make it accessible to undergraduates as well as an ideal self-study guide. 1990 edition.




Introduction to Partial Differential Equations and Hilbert Space Methods


Book Description

This volume offers an excellent undergraduate-level introduction to the main topics, methods, and applications of partial differential equations. Chapter 1 presents a full introduction to partial differential equations and Fourier series as related to applied mathematics. Chapter 2 begins with a more comprehensive look at the principal method for solving partial differential equations — the separation of variables — and then more fully develops that approach in the contexts of Hilbert space and numerical methods. Chapter 3 includes an expanded treatment of first-order systems, a short introduction to computational methods, and aspects of topical research on the partial differential equations of fluid dynamics. With over 600 problems and exercises, along with explanations, examples, and a comprehensive section of answers, hints, and solutions, this superb, easy-to-use text is ideal for a one-semester or full-year course. It will also provide the mathematically inclined layperson with a stimulating review of the subject's essentials.




Partial Differential Equations


Book Description

A rigorous introduction to the abstract theory of partial differential equations progresses from the theory of distribution and Sobolev spaces to Fredholm operations, the Schauder fixed point theorem and Bochner integrals.




Functional Analysis, Sobolev Spaces and Partial Differential Equations


Book Description

This textbook is a completely revised, updated, and expanded English edition of the important Analyse fonctionnelle (1983). In addition, it contains a wealth of problems and exercises (with solutions) to guide the reader. Uniquely, this book presents in a coherent, concise and unified way the main results from functional analysis together with the main results from the theory of partial differential equations (PDEs). Although there are many books on functional analysis and many on PDEs, this is the first to cover both of these closely connected topics. Since the French book was first published, it has been translated into Spanish, Italian, Japanese, Korean, Romanian, Greek and Chinese. The English edition makes a welcome addition to this list.




Partial Differential Equations


Book Description

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors




Techniques of Functional Analysis for Differential and Integral Equations


Book Description

Techniques of Functional Analysis for Differential and Integral Equations describes a variety of powerful and modern tools from mathematical analysis, for graduate study and further research in ordinary differential equations, integral equations and partial differential equations. Knowledge of these techniques is particularly useful as preparation for graduate courses and PhD research in differential equations and numerical analysis, and more specialized topics such as fluid dynamics and control theory. Striking a balance between mathematical depth and accessibility, proofs involving more technical aspects of measure and integration theory are avoided, but clear statements and precise alternative references are given . The work provides many examples and exercises drawn from the literature. - Provides an introduction to mathematical techniques widely used in applied mathematics and needed for advanced research in ordinary and partial differential equations, integral equations, numerical analysis, fluid dynamics and other areas - Establishes the advanced background needed for sophisticated literature review and research in differential equations and integral equations - Suitable for use as a textbook for a two semester graduate level course for M.S. and Ph.D. students in Mathematics and Applied Mathematics




An Introduction to the Mathematical Theory of Finite Elements


Book Description

This introduction to the theory of Sobolev spaces and Hilbert space methods in partial differential equations is geared toward readers of modest mathematical backgrounds. It offers coherent, accessible demonstrations of the use of these techniques in developing the foundations of the theory of finite element approximations. J. T. Oden is Director of the Institute for Computational Engineering & Sciences (ICES) at the University of Texas at Austin, and J. N. Reddy is a Professor of Engineering at Texas A&M University. They developed this essentially self-contained text from their seminars and courses for students with diverse educational backgrounds. Their effective presentation begins with introductory accounts of the theory of distributions, Sobolev spaces, intermediate spaces and duality, the theory of elliptic equations, and variational boundary value problems. The second half of the text explores the theory of finite element interpolation, finite element methods for elliptic equations, and finite element methods for initial boundary value problems. Detailed proofs of the major theorems appear throughout the text, in addition to numerous examples.




Beyond Partial Differential Equations


Book Description

This book introduces the treatment of linear and nonlinear (quasi-linear) abstract evolution equations by methods from the theory of strongly continuous semigroups. The theoretical part is accessible to graduate students with basic knowledge in functional analysis, with only some examples requiring more specialized knowledge from the spectral theory of linear, self-adjoint operators in Hilbert spaces. Emphasis is placed on equations of the hyperbolic type which are less often treated in the literature.