Introduction to Polymer Science and Chemistry


Book Description

With such a wide diversity of properties and applications, is it any wonder that industry and academia have such a fascination with polymers? A solid introduction to such an enormous and important field is critical to the modern polymer scientist-to-be, but most of the available books do not stress practical problem solving or include recent advances. Serving as the polymer book for the new millennium, Introduction to Polymer Science and Chemistry: A Problem Solving Approach unites the fundamentals of polymer science and polymer chemistry in a seamless presentation. Emphasizing polymerization kinetics, the author uses a unique question-and-answer approach when developing theory or introducing new concepts. The first four chapters introduce polymer science, focusing on physical and molecular properties, solution behavior, and molecular weights. The remainder of the book explores polymer chemistry, devoting individual, self-contained chapters to the main types of polymerization reactions: condensation; free radical; ionic; coordination; and ring-opening. It introduces recent advances such as supramolecular polymerization, hyperbranching, photoemulsion polymerization, the grafting-from polymerization process, polymer brushes, living/controlled radical polymerization, and immobilized metallocene catalysts. With numerical problems accompanying the discussion at every step along with numerous end-of-chapter exercises, Introduction to Chemical Polymer Science: A Problem Solving Approach is an ideal introductory text and self-study vehicle for mastering the principles and methodologies of modern polymer science and chemistry.




Polymer Chemistry


Book Description

This high school textbook introduces polymer science basics, properties, and uses. It starts with a broad overview of synthetic and natural polymers and then covers synthesis and preparation, processing methods, and demonstrations and experiments. The history of polymers is discussed alongside the s




Introduction to Physical Polymer Science


Book Description

An Updated Edition of the Classic Text Polymers constitute the basis for the plastics, rubber, adhesives, fiber, and coating industries. The Fourth Edition of Introduction to Physical Polymer Science acknowledges the industrial success of polymers and the advancements made in the field while continuing to deliver the comprehensive introduction to polymer science that made its predecessors classic texts. The Fourth Edition continues its coverage of amorphous and crystalline materials, glass transitions, rubber elasticity, and mechanical behavior, and offers updated discussions of polymer blends, composites, and interfaces, as well as such basics as molecular weight determination. Thus, interrelationships among molecular structure, morphology, and mechanical behavior of polymers continue to provide much of the value of the book. Newly introduced topics include: Nanocomposites, including carbon nanotubes and exfoliated montmorillonite clays The structure, motions, and functions of DNA and proteins, as well as the interfaces of polymeric biomaterials with living organisms The glass transition behavior of nano-thin plastic films In addition, new sections have been included on fire retardancy, friction and wear, optical tweezers, and more. Introduction to Physical Polymer Science, Fourth Edition provides both an essential introduction to the field as well as an entry point to the latest research and developments in polymer science and engineering, making it an indispensable text for chemistry, chemical engineering, materials science and engineering, and polymer science and engineering students and professionals.




Introduction to Polymer Chemistry, Fourth Edition


Book Description

Introduction to Polymer Chemistry provides undergraduate students with a much-needed, well-rounded presentation of the principles and applications of natural, synthetic, inorganic, and organic polymers. With an emphasis on the environment and green chemistry and materials, this fourth edition continues to provide detailed coverage of natural and synthetic giant molecules, inorganic and organic polymers, elastomers, adhesives, coatings, fibers, plastics, blends, caulks, composites, and ceramics. Building on undergraduate work in foundational courses, the text fulfills the American Chemical Society Committee on Professional Training (ACS CPT) in-depth course requirement




An Introduction to Polymer Science


Book Description

Hans-Georg Elias An Introduction to Polymer Science Polymer science at its best! A completely new approach reflecting the interdisciplinary nature of polymer science! Modern polymer science is firmly rooted not only in the chemistry of macromolecules but also in their pyhsical chemistry and physics. Furthermore, this modern insight provides the reader with information on the three most important uses of synthetic polymers: elastomers, fibers and plastics. Biopolymers are also considered. This book fulfills the need for a volume which introduces polymer science in a straightforward, rigorous, and practical way. It is divided into four parts that cover the chemistry, physical chemistry, physics and technology of polymers. Whenever possible, physical equations are not just presented but are derived step by step from first principles enabling the newcomer to ease smoothy into the subject. The reference to industrial aspects makes this book an indispensable support for both students and professionals.




Polymer Chemistry


Book Description




Rubber Technology


Book Description

About ten years after the publication of the Second Edition (1973), it became apparent that it was time for an up-date of this book. This was especially true in this case, since the subject matter has traditionally dealt mainly with the structure, properties, and technology of the various elastomers used in industry, and these are bound to undergo significant changes over the period of a decade. In revising the contents of this volume, it was thought best to keep the orig inal format. Hence the first five chapters discuss the same general subject matter as before. The chapters dealing with natural rubber and the synthetic elastomers are up-dated, and an entirely new chapter has been added on the thermoplastic elastomers, which have, of course, grown tremendously in importance. Another innovation is the addition of a new chapter, "Miscellaneous Elastomers," to take care of "old" elastomers, e.g., polysulfides, which have decreased some what in importance, as well as to introduce some of the newly-developed syn thetic rubbers which have not yet reached high production levels. The editor wishes to express his sincere appreciation to all the contributors, without whose close cooperation this task would have been impossible. He would especially like to acknowledge the invaluable assistance of Dr. Howard Stephens in the planning of this book, and for his suggestion of suitable authors.




Polymer Chemistry


Book Description

A well-rounded and articulate examination of polymer properties at the molecular level, Polymer Chemistry focuses on fundamental principles based on underlying chemical structures, polymer synthesis, characterization, and properties. It emphasizes the logical progression of concepts and provide mathematical tools as needed as well as fully derived problems for advanced calculations. The much-anticipated Third Edition expands and reorganizes material to better develop polymer chemistry concepts and update the remaining chapters. New examples and problems are also featured throughout. This revised edition: Integrates concepts from physics, biology, materials science, chemical engineering, and statistics as needed Contains mathematical tools and step-by-step derivations for example problems Incorporates new theories and experiments using the latest tools and instrumentation and topics that appear prominently in current polymer science journals The number of homework problems has been greatly increased, to over 350 in all The worked examples and figures have been augmented More examples of relevant synthetic chemistry have been introduced into Chapter 2 ("Step-Growth Polymers") More details about atom-transfer radical polymerization and reversible addition/fragmentation chain-transfer polymerization have been added to Chapter 4 ("Controlled Polymerization") Chapter 7 (renamed "Thermodynamics of Polymer Mixtures") now features a separate section on thermodynamics of polymer blends Chapter 8 (still called "Light Scattering by Polymer Solutions") has been supplemented with an extensive introduction to small-angle neutron scattering Polymer Chemistry, Third Edition offers a logical presentation of topics that can be scaled to meet the needs of introductory as well as more advanced courses in chemistry, materials science, polymer science, and chemical engineering.




Fundamentals of Polymer Science


Book Description

Now in its second edition, this widely used text provides a unique presentation of today's polymer science. It is both comprehensive and readable. The authors are leading educators in this field with extensive background in industrial and academic polymer research. The text starts with a description of the types of microstructures found in polymer




Introduction to Polymer Chemistry


Book Description

Fundamental concepts and reactions explained through polymers from plants and animals Macromolecular structures introduced via biological polymers Includes a course syllabus, study questions and exercises Extensive lab guidance and protocols for DNA isolation, amplification using PCR Full color figures shown throughout the text This book connects modern synthetic polymer chemistry to its roots by exploring the chemistry of natural polymers and self-assembled macromolecular structures. Designed to introduce students to the basics of polymer science, the text investigates intermolecular forces, functional groups and key reactions by means of polymers found in, and produced by, living plants and animals, including proteins, rubber, DNA, fibers, lignin, carbohydrates and many others. The author explains how varied natural polymeric systems illustrate a wide array of fundamental polymer concepts. Key analogies are demonstrated between mechanisms in biological and synthetic polymerization, and the text uses growth, DNA replication, self-assembly and other biological processes to assist the student in mastering the terminology and molecular-level mechanisms of polymer chemistry. To guide both instructors and students the book includes the outline of a one-semester course syllabus, end-of-chapter questions, as well as detailed instructions for setting up multiple labs dealing with gene isolation and amplification using polymerase chain reaction techniques (PCR). Each chapter also offers exercises based on real-world examples.




Recent Books