Introduction to Random Chaos


Book Description

Introduction to Random Chaos contains a wealth of information on this significant area, rooted in hypercontraction and harmonic analysis. Random chaos statistics extend the classical concept of empirical mean and variance. By focusing on the three models of Rademacher, Poisson, and Wiener chaos, this book shows how an iteration of a simple random principle leads to a nonlinear probability model- unifying seemingly separate types of chaos into a network of theorems, procedures, and applications. The concepts and techniques connect diverse areas of probability, algebra, and analysis and enhance numerous links between many fields of science. Introduction to Random Chaos serves researchers and graduate students in probability, analysis, statistics, physics, and applicable areas of science and technology.




Chaos


Book Description

Chaos exists in systems all around us. This introduction draws in philosophy, literature, and maths to explain Chaos Theory, showing the variety of its applications in the real world, from technology to global warming, politics, and even gambling on the stock market.




Chaos: A Mathematical Introduction


Book Description

Textbook on chaos; class-tested, elementary but rigorous, with applications and lots of pictures and exercises.







Chaos


Book Description

One CD-ROM disc in pocket.




The Essence Of Chaos


Book Description

The study of chaotic systems has become a major scientific pursuit in recent years, shedding light on the apparently random behaviour observed in fields as diverse as climatology and mechanics. InThe Essence of Chaos Edward Lorenz, one of the founding fathers of Chaos and the originator of its seminal concept of the Butterfly Effect, presents his own landscape of our current understanding of the field. Lorenz presents everyday examples of chaotic behaviour, such as the toss of a coin, the pinball's path, the fall of a leaf, and explains in elementary mathematical strms how their essentially chaotic nature can be understood. His principal example involved the construction of a model of a board sliding down a ski slope. Through this model Lorenz illustrates chaotic phenomena and the related concepts of bifurcation and strange attractors. He also provides the context in which chaos can be related to the similarly emergent fields of nonlinearity, complexity and fractals. As an early pioneer of chaos, Lorenz also provides his own story of the human endeavour in developing this new field. He describes his initial encounters with chaos through his study of climate and introduces many of the personalities who contributed early breakthroughs. His seminal paper, "Does the Flap of a Butterfly's Wing in Brazil Set Off a Tornado in Texas?" is published for the first time.




Introducing Chaos


Book Description

If a butterfly flaps its wings in Brazil, does it cause a tornado in Texas? Chaos theory attempts to answer such baffling questions. The discovery of randomness in apparently predictable physical systems has evolved into a science that declares the universe to be far more unpredictable than we have ever imagined. Introducing Chaos explains how chaos makes its presence felt in events from the fluctuation of animal populations to the ups and downs of the stock market. It also examines the roots of chaos in modern maths and physics, and explores the relationship between chaos and complexity, the unifying theory which suggests that all complex systems evolve from a few simple rules. This is an accessible introduction to an astonishing and controversial theory.




Quantum Chaos


Book Description

Discusses quantum chaos, an important area of nonlinear science.




Chaos: Concepts, Control and Constructive Use


Book Description

This book offers a short and concise introduction to the many facets of chaos theory. While the study of chaotic behavior in nonlinear, dynamical systems is a well-established research field with ramifications in all areas of science, there is a lot to be learnt about how chaos can be controlled and, under appropriate conditions, can actually be constructive in the sense of becoming a control parameter for the system under investigation, stochastic resonance being a prime example. The present work stresses the latter aspects and, after recalling the paradigm changes introduced by the concept of chaos, leads the reader skillfully through the basics of chaos control by detailing the relevant algorithms for both Hamiltonian and dissipative systems, among others. The main part of the book is then devoted to the issue of synchronization in chaotic systems, an introduction to stochastic resonance, and a survey of ratchet models. In this second, revised and enlarged edition, two more chapters explore the many interfaces of quantum physics and dynamical systems, examining in turn statistical properties of energy spectra, quantum ratchets, and dynamical tunneling, among others. This text is particularly suitable for non-specialist scientists, engineers, and applied mathematical scientists from related areas, wishing to enter the field quickly and efficiently. From the reviews of the first edition: This book is an excellent introduction to the key concepts and control of chaos in (random) dynamical systems [...] The authors find an outstanding balance between main physical ideas and mathematical terminology to reach their audience in an impressive and lucid manner. This book is ideal for anybody who would like to grasp quickly the main issues related to chaos in discrete and continuous time. Henri Schurz, Zentralblatt MATH, Vol. 1178, 2010.




Chaos


Book Description

Chaos: The Science of Predictable Random Motion bridges the gap between introductions for the layman and college-level texts with an account of chaos theory based on elementary mathematics. It develops the science of dynamics in terms of small time steps, describes the phenomenon of chaos through simple examples, and concludes with a close look at a homoclinic tangle, the mathematical monster at the heart of chaos. The presentation is enhanced by numerousfigures, animations of chaotic motion (available on a companion CD), and biographical sketches of the pioneers of dynamics and chaos theory.