Algebraic Combinatorics


Book Description

This book is based on two series of lectures given at a summer school on algebraic combinatorics at the Sophus Lie Centre in Nordfjordeid, Norway, in June 2003, one by Peter Orlik on hyperplane arrangements, and the other one by Volkmar Welker on free resolutions. Both topics are essential parts of current research in a variety of mathematical fields, and the present book makes these sophisticated tools available for graduate students.




Frontiers of Numerical Analysis


Book Description

Contains lecture notes on four topics at the forefront of research in computational mathematics. This book presents a self-contained guide to a research area, an extensive bibliography, and proofs of the key results. It is suitable for professional mathematicians who require an accurate account of research in areas parallel to their own.




Riemannian Geometry and Geometric Analysis


Book Description

The present textbook is a somewhat expanded version of the material of a three-semester course I gave in Bochum. It attempts a synthesis of geometric and analytic methods in the study of Riemannian manifolds. In the first chapter, we introduce the basic geometric concepts, like dif ferentiable manifolds, tangent spaces, vector bundles, vector fields and one parameter groups of diffeomorphisms, Lie algebras and groups and in par ticular Riemannian metrics. We also derive some elementary results about geodesics. The second chapter introduces de Rham cohomology groups and the es sential tools from elliptic PDE for treating these groups. In later chapters, we shall encounter nonlinear versions of the methods presented here. The third chapter treats the general theory of connections and curvature. In the fourth chapter, we introduce Jacobi fields, prove the Rauch com parison theorems for Jacobi fields and apply these results to geodesics. These first four chapters treat the more elementary and basic aspects of the subject. Their results will be used in the remaining, more advanced chapters that are essentially independent of each other. In the fifth chapter, we develop Morse theory and apply it to the study of geodesics. The sixth chapter treats symmetric spaces as important examples of Rie mannian manifolds in detail.




Partial Differential Equations 2


Book Description

This encyclopedic work covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Emphasis is placed on the connection of PDEs and complex variable methods. This second volume addresses Solvability of operator equations in Banach spaces; Linear operators in Hilbert spaces and spectral theory; Schauder's theory of linear elliptic differential equations; Weak solutions of differential equations; Nonlinear partial differential equations and characteristics; Nonlinear elliptic systems with differential-geometric applications. While partial differential equations are solved via integral representations in the preceding volume, this volume uses functional analytic solution methods.




Tools for Computational Finance


Book Description

Tools for Computational Finance offers a clear explanation of computational issues arising in financial mathematics. The new third edition is thoroughly revised and significantly extended, including an extensive new section on analytic methods, focused mainly on interpolation approach and quadratic approximation. Other new material is devoted to risk-neutrality, early-exercise curves, multidimensional Black-Scholes models, the integral representation of options and the derivation of the Black-Scholes equation. New figures, more exercises, and expanded background material make this guide a real must-to-have for everyone working in the world of financial engineering.




Motivic Homotopy Theory


Book Description

This book is based on lectures given at a summer school on motivic homotopy theory at the Sophus Lie Centre in Nordfjordeid, Norway, in August 2002. Vladimir Voevodsky is one of the founders of the theory and received the Fields medal for his work.




Non-Life Insurance Mathematics


Book Description

"Offers a mathematical introduction to non-life insurance and, at the same time, to a multitude of applied stochastic processes. It gives detailed discussions of the fundamental models for claim sizes, claim arrivals, the total claim amount, and their probabilistic properties....The reader gets to know how the underlying probabilistic structures allow one to determine premiums in a portfolio or in an individual policy." --Zentralblatt für Didaktik der Mathematik




Dynamical Systems


Book Description

Breadth of scope is unique Author is a widely-known and successful textbook author Unlike many recent textbooks on chaotic systems that have superficial treatment, this book provides explanations of the deep underlying mathematical ideas No technical proofs, but an introduction to the whole field that is based on the specific analysis of carefully selected examples Includes a section on cellular automata




Mathematical Concepts of Quantum Mechanics


Book Description

The book gives a streamlined introduction to quantum mechanics, while describing the basic mathematical structures underpinning this discipline. Starting with an overview of the key physical experiments illustrating the origin of the physical foundations, the book proceeds to a description of the basic notions of quantum mechanics and their mathematical content. It then makes its way to topics of current interest, specifically those in which mathematics plays an important role. The topics presented include spectral theory, many-body theory, positive temperatures, path integrals and quasiclassical asymptotics, the theory of resonances, an introduction to quantum field theory and the theory of radiation. The book can serve as a text for an intermediate course in quantum mechanics, or a more advanced topics course.