Introduction to Strain-Based Structural Health Monitoring of Civil Structures


Book Description

A comprehensive introduction to strain-based structural health monitoring of civil structures, with focus on measurement and data analysis Introduction to Strain-Based Structural Health Monitoring of Civil Structures focuses on the SHM of civil structures and infrastructure, and develops the relevant topics of measurement and data analysis from a fundamental to advanced level. The book contains an overview of the available and emerging strain monitoring technologies like traditional strain-gauges and vibrating wire sensors, discrete and distributed fiber optic sensors, and large area electronics. The fundamentals of error analysis, as well as typical sources of errors in measurements, are discussed. Sources of strain in typical construction materials such concrete, steel, timber, and composite materials are also discussed, while both basic and advanced data interpretation and analysis for monitoring of concrete and steel structures are presented in detail. Methods applicable to a large spectrum of beam-like structural elements and civil structures, such as bridges, buildings, and pipelines, are summarized. These methods are developed at three scales: local scale (material or structural), global (structural) scale, and integrity scale, and are illustrated with practical examples. Key features: Defines and describes SHM and identifies its main components and stakeholders. Explores the potential and benefits as well as the limitations of SHM. Introduces strain-based structural health monitoring of civil structures, with focus on measurement and data analysis. Covers the physical principles, advantages, and limitations of various types of sensors. Covers fundamental error analysis and presents typical sources of errors. Covers the sources of short- and long-term strain, and how to interpret the strain measurement. Includes basic and advanced model-based methods for data analysis. Contains the basic strain-based SHM methods for monitoring various types of structures at local, global, and integrity scale. Suitable as a guide for practicing engineers, a reference for infrastructure owners, and a textbook for researchers and SHM university courses. A valuable companion to Glisic & Inaudi’s Fibre Optic Methods for Structural Health Monitoring. Introduction to Strain-Based Structural Health Monitoring of Civil Structures is essential, state-of-the-art reading for civil and structural engineers and professionals in SHM, as well as teachers, researchers, and students in civil engineering.




Structural Health Monitoring of Large Civil Engineering Structures


Book Description

A critical review of key developments and latest advances in Structural Health Monitoring technologies applied to civil engineering structures, covering all aspects required for practical application Structural Health Monitoring (SHM) provides the facilities for in-service monitoring of structural performance and damage assessment, and is a key element of condition based maintenance and damage prognosis. This comprehensive book brings readers up to date on the most important changes and advancements in the structural health monitoring technologies applied to civil engineering structures. It covers all aspects required for such monitoring in the field, including sensors and networks, data acquisition and processing, damage detection techniques and damage prognostics techniques. The book also includes a number of case studies showing how the techniques can be applied in the development of sustainable and resilient civil infrastructure systems. Structural Health Monitoring of Large Civil Engineering Structures offers in-depth chapter coverage of: Sensors and Sensing Technology for Structural Monitoring; Data Acquisition, Transmission, and Management; Structural Damage Identification Techniques; Modal Analysis of Civil Engineering Structures; Finite Element Model Updating; Vibration Based Damage Identification Methods; Model Based Damage Assessment Methods; Monitoring Based Reliability Analysis and Damage Prognosis; and Applications of SHM Strategies to Large Civil Structures. Presents state-of-the-art SHM technologies allowing asset managers to evaluate structural performance and make rational decisions Covers all aspects required for the practical application of SHM Includes case studies that show how the techniques can be applied in practice Structural Health Monitoring of Large Civil Engineering Structures is an ideal book for practicing civil engineers, academics and postgraduate students studying civil and structural engineering.




Introduction to Strain-Based Structural Health Monitoring of Civil Structures


Book Description

A comprehensive introduction to strain-based structural health monitoring of civil structures, with focus on measurement and data analysis Introduction to Strain-Based Structural Health Monitoring of Civil Structures focuses on the SHM of civil structures and infrastructure, and develops the relevant topics of measurement and data analysis from a fundamental to advanced level. The book contains an overview of the available and emerging strain monitoring technologies like traditional strain-gauges and vibrating wire sensors, discrete and distributed fiber optic sensors, and large area electronics. The fundamentals of error analysis, as well as typical sources of errors in measurements, are discussed. Sources of strain in typical construction materials such concrete, steel, timber, and composite materials are also discussed, while both basic and advanced data interpretation and analysis for monitoring of concrete and steel structures are presented in detail. Methods applicable to a large spectrum of beam-like structural elements and civil structures, such as bridges, buildings, and pipelines, are summarized. These methods are developed at three scales: local scale (material or structural), global (structural) scale, and integrity scale, and are illustrated with practical examples. Key features: Defines and describes SHM and identifies its main components and stakeholders. Explores the potential and benefits as well as the limitations of SHM. Introduces strain-based structural health monitoring of civil structures, with focus on measurement and data analysis. Covers the physical principles, advantages, and limitations of various types of sensors. Covers fundamental error analysis and presents typical sources of errors. Covers the sources of short- and long-term strain, and how to interpret the strain measurement. Includes basic and advanced model-based methods for data analysis. Contains the basic strain-based SHM methods for monitoring various types of structures at local, global, and integrity scale. Suitable as a guide for practicing engineers, a reference for infrastructure owners, and a textbook for researchers and SHM university courses. A valuable companion to Glisic & Inaudi’s Fibre Optic Methods for Structural Health Monitoring. Introduction to Strain-Based Structural Health Monitoring of Civil Structures is essential, state-of-the-art reading for civil and structural engineers and professionals in SHM, as well as teachers, researchers, and students in civil engineering.




Structural Health Monitoring


Book Description

This book is organized around the various sensing techniques used to achieve structural health monitoring. Its main focus is on sensors, signal and data reduction methods and inverse techniques, which enable the identification of the physical parameters, affected by the presence of the damage, on which a diagnostic is established. Structural Health Monitoring is not oriented by the type of applications or linked to special classes of problems, but rather presents broader families of techniques: vibration and modal analysis; optical fibre sensing; acousto-ultrasonics, using piezoelectric transducers; and electric and electromagnetic techniques. Each chapter has been written by specialists in the subject area who possess a broad range of practical experience. The book will be accessible to students and those new to the field, but the exhaustive overview of present research and development, as well as the numerous references provided, also make it required reading for experienced researchers and engineers.




Structural Health Monitoring 2015


Book Description

Proceedings of the Tenth International Workshop on Structural Health Monitoring, September 1–3, 2015. Selected research on the entire spectrum of structural health techniques and areas of applicationAvailable in print, complete online text download or individual articles. Series book comprising two volumes provides selected international research on the entire spectrum of structural health monitoring techniques used to diagnose and safeguard aircraft, vehicles, buildings, civil infrastructure, ships and railroads, as well as their components such as joints, bondlines, coatings and more. Includes special sections on system design, signal processing, multifunctional materials, sensor distribution, embedded sensors for monitoring composites, reliability and applicability in extreme environments. The extensive contents can be viewed below.




Structural Health Monitoring


Book Description

Written by global leaders and pioneers in the field, this book is a must-have read for researchers, practicing engineers and university faculty working in SHM. Structural Health Monitoring: A Machine Learning Perspective is the first comprehensive book on the general problem of structural health monitoring. The authors, renowned experts in the field, consider structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm, first explaining the paradigm in general terms then explaining the process in detail with further insight provided via numerical and experimental studies of laboratory test specimens and in-situ structures. This paradigm provides a comprehensive framework for developing SHM solutions. Structural Health Monitoring: A Machine Learning Perspective makes extensive use of the authors’ detailed surveys of the technical literature, the experience they have gained from teaching numerous courses on this subject, and the results of performing numerous analytical and experimental structural health monitoring studies. Considers structural health monitoring in a new manner by casting the problem in the context of a machine learning/statistical pattern recognition paradigm Emphasises an integrated approach to the development of structural health monitoring solutions by coupling the measurement hardware portion of the problem directly with the data interrogation algorithms Benefits from extensive use of the authors’ detailed surveys of 800 papers in the technical literature and the experience they have gained from teaching numerous short courses on this subject.




Fibre Optic Methods for Structural Health Monitoring


Book Description

The use of fibre optic sensors in structural health monitoring has rapidly accelerated in recent years. By embedding fibre optic sensors in structures (e.g. buildings, bridges and pipelines) it is possible to obtain real time data on structural changes such as stress or strain. Engineers use monitoring data to detect deviations from a structure’s original design performance in order to optimise the operation, repair and maintenance of a structure over time. Fibre Optic Methods for Structural Health Monitoring is organised as a step-by-step guide to implementing a monitoring system and includes examples of common structures and their most-frequently monitored parameters. This book: presents a universal method for static structural health monitoring, using a technique with proven effectiveness in hundreds of applications worldwide; discusses a variety of different structures including buildings, bridges, dams, tunnels and pipelines; features case studies which describe common problems and offer solutions to those problems; provides advice on establishing mechanical parameters to monitor (including deformations, rotations and displacements) and on placing sensors to achieve monitoring objectives; identifies methods for interpreting data according to construction material and shows how to apply numerical concepts and formulae to data in order to inform decision making. Fibre Optic Methods for Structural Health Monitoring is an invaluable reference for practising engineers in the fields of civil, structural and geotechnical engineering. It will also be of interest to academics and undergraduate/graduate students studying civil and structural engineering.




Structural Health Monitoring of Civil Infrastructure Systems


Book Description

Structural health monitoring is an extremely important methodology in evaluating the 'health' of a structure by assessing the level of deterioration and remaining service life of civil infrastructure systems. This book reviews key developments in research, technologies and applications in this area of civil engineering. It discusses ways of obtaining and analysing data, sensor technologies and methods of sensing changes in structural performance characteristics. It also discusses data transmission and the application of both individual technologies and entire systems to bridges and buildings.With its distinguished editors and international team of contributors, Structural health monitoring of civil infrastructure systems is a valuable reference for students in civil and structural engineering programs as well as those studying sensors, data analysis and transmission at universities. It will also be an important source for practicing civil engineers and designers, engineers and researchers developing sensors, network systems and methods of data transmission and analysis, policy makers, inspectors and those responsible for the safety and service life of civil infrastructure. - Reviews key developments in research, technologies and applications - Discusses systems used to obtain and analyse data and sensor technologies - Assesses methods of sensing changes in structural performance




Structural Health Monitoring Damage Detection Systems for Aerospace


Book Description

This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation.




Structural Health Monitoring For Advanced Composite Structures


Book Description

Structural health monitoring (SHM) is a relatively new and alternative way of non-destructive inspection (NDI). It is the process of implementing a damage detection and characterization strategy for composite structures. The basis of SHM is the application of permanent fixed sensors on a structure, combined with minimum manual intervention to monitor its structural integrity. These sensors detect changes to the material and/or geometric properties of a structural system, including changes to the boundary conditions and system connectivity, which adversely affect the system's performance.This book's primary focus is on the diagnostics element of SHM, namely damage detection in composite structures. The techniques covered include the use of Piezoelectric transducers for active and passive Ultrasonics guided waves and electromechanical impedance measurements, and fiber optic sensors for strain sensing. It also includes numerical modeling of wave propagation in composite structures. Contributed chapters written by leading researchers in the field describe each of these techniques, making it a key text for researchers and NDI practitioners as well as postgraduate students in a number of specialties including materials, aerospace, mechanical and computational engineering.