Introduction to Synthetic Aperture Radar: Concepts and Practice


Book Description

Explore the principles and applications of synthetic aperture radar This comprehensive guide offers a solid grounding in synthetic aperture radar (SAR) fundamentals and techniques. Written by a remote sensing and signal processing expert, Introduction to Synthetic Aperture Radar: Concepts and Practice clearly explains data collection, image formation, error correction, and image quality. You will get concise descriptions of commonly used image formation algorithms, including the Range-Doppler Algorithm (RDA) and the Polar Formatting Algorithm (PFA). Continuous wave LFM systems, interferometry, polarimetry, and moving objects are discussed in detail. Coverage includes: Origins of synthetic aperture radar Ranging and imaging Image formation and image processing tools Linear frequency-modulated chirp Image formation algorithms for quadrature demodulated data Image formation algorithms for dechirped data Autofocus Image quality and speckle reduction Linear frequency-modulated continuous wave systems Remote sensing Interferometry Moving objects in SAR




Spotlight Synthetic Aperture Radar


Book Description

?The book gives an excellent theoretical and practical background of SAR in general and specifically of spotlight SAR. The rich experience of the authors in spotlight SAR processing is reflected by a very detailed summary of the associated theory as well as a lot of SAR image examples. These images illustrate the techniques described in the book and provide a valuable connection to practice. This book can be highly recommended to all scientists and engineers involved in SAR system design and SAR data evaluation.?---International Journal of Electronics and Communications







Synthetic Aperture Radar


Book Description




Synthetic Aperture Radar Polarimetry


Book Description

This book describes the application of polarimetric synthetic aperture radar to earth remote sensing based on research at the NASA Jet Propulsion Laboratory (JPL). This book synthesizes all current research to provide practical information for both the newcomer and the expert in radar polarimetry. The text offers a concise description of the mathematical fundamentals illustrated with many examples using SAR data, with a main focus on remote sensing of the earth. The book begins with basics of synthetic aperture radar to provide the basis for understanding how polarimetric SAR images are formed and gives an introduction to the fundamentals of radar polarimetry. It goes on to discuss more advanced polarimetric concepts that allow one to infer more information about the terrain being imaged. In order to analyze data quantitatively, the signals must be calibrated carefully, which the book addresses in a chapter summarizing the basic calibration algorithms. The book concludes with examples of applying polarimetric analysis to scattering from rough surfaces, to infer soil moisture from radar signals.




Small and Short-Range Radar Systems


Book Description

Radar Expert, Esteemed Author Gregory L. Charvat on CNN and CBSAuthor Gregory L. Charvat appeared on CNN on March 17, 2014 to discuss whether Malaysia Airlines Flight 370 might have literally flown below the radar. He appeared again on CNN on March 20, 2014 to explain the basics of radar, and he explored the hope and limitations of the technology i




Introduction to Radar Using Python and MATLAB


Book Description

This comprehensive resource provides readers with the tools necessary to perform analysis of various waveforms for use in radar systems. It provides information about how to produce synthetic aperture (SAR) images by giving a tomographic formulation and implementation for SAR imaging. Tracking filter fundamentals, and each parameter associated with the filter and how each affects tracking performance are also presented. Various radar cross section measurement techniques are covered, along with waveform selection analysis through the study of the ambiguity function for each particular waveform from simple linear frequency modulation (LFM) waveforms to more complicated coded waveforms. The text includes the Python tool suite, which allows the reader to analyze and predict radar performance for various scenarios and applications. Also provided are MATLAB® scripts corresponding to the Python tools. The software includes a user-friendly graphical user interface (GUI) that provides visualizations of the concepts being covered. Users have full access to both the Python and MATLAB source code to modify for their application. With examples using the tool suite are given at the end of each chapter, this text gives readers a clear understanding of how important target scattering is in areas of target detection, target tracking, pulse integration, and target discrimination.




Principles of Synthetic Aperture Radar Imaging


Book Description

Principles of Synthetic Aperture Radar Imaging: A System Simulation Approach demonstrates the use of image simulation for SAR. It covers the various applications of SAR (including feature extraction, target classification, and change detection), provides a complete understanding of SAR principles, and illustrates the complete chain of a SAR operati




Synthetic Aperture Radar Processing


Book Description

Synthetic Aperture Radar Processing simply and methodically presents principles and techniques of Synthetic Aperture Radar (SAR) image generation by analyzing its system transfer function. The text considers the full array of operation modes from strip to scan, emphasizes processing techniques, enabling the design of operational SAR codes. A simple example then follows. This book will be invaluable to all SAR scientists and engineers working in the field. It may be used as the basis for a course on SAR image generation or as a reference book on remote sensing. It contains a wide spectrum of information presented with clarity and rigor.




Fundamentals of Radar Signal Processing


Book Description

Advances in DSP (digital signal processing) have radically altered the design and usage of radar systems -- making it essential for both working engineers as well as students to master DSP techniques. This text, which evolved from the author's own teaching, offers a rigorous, in-depth introduction to today's complex radar DSP technologies. Contents: Introduction to Radar Systems * Signal Models * Sampling and Quantization of Pulsed Radar Signals * Radar Waveforms * Pulse Compression Waveforms * Doppler Processing * Detection Fundamentals * Constant False Alarm Rate (CFAR) Detection * Introduction to Synthetic Aperture Imaging