Introduction to the Analysis of Metric Spaces


Book Description

This is an introduction to the analysis of metric and normed linear spaces for undergraduate students in mathematics. Assuming a basic knowledge of real analysis and linear algebra, the student is exposed to the axiomatic method in analysis and is shown its power in exploiting the structure of fundamental analysis, which underlies a variety of applications. An example is the link between normed linear spaces and linear algebra; finite dimensional spaces are discussed early. The treatment progresses from the concrete to the abstract: thus metric spaces are studied in some detail before general topology is begun, though topological properties of metric spaces are explored in the book. Graded exercises are provided at the end of each section; in each set the earlier exercises are designed to assist in the detection of the structural properties in concrete examples while the later ones are more conceptually sophisticated.




Introduction to Metric and Topological Spaces


Book Description

One of the ways in which topology has influenced other branches of mathematics in the past few decades is by putting the study of continuity and convergence into a general setting. This new edition of Wilson Sutherland's classic text introduces metric and topological spaces by describing some of that influence. The aim is to move gradually from familiar real analysis to abstract topological spaces, using metric spaces as a bridge between the two. The language of metric and topological spaces is established with continuity as the motivating concept. Several concepts are introduced, first in metric spaces and then repeated for topological spaces, to help convey familiarity. The discussion develops to cover connectedness, compactness and completeness, a trio widely used in the rest of mathematics. Topology also has a more geometric aspect which is familiar in popular expositions of the subject as `rubber-sheet geometry', with pictures of Möbius bands, doughnuts, Klein bottles and the like; this geometric aspect is illustrated by describing some standard surfaces, and it is shown how all this fits into the same story as the more analytic developments. The book is primarily aimed at second- or third-year mathematics students. There are numerous exercises, many of the more challenging ones accompanied by hints, as well as a companion website, with further explanations and examples as well as material supplementary to that in the book.




An Introduction to Metric Spaces


Book Description

This book serves as a textbook for an introductory course in metric spaces for undergraduate or graduate students. The goal is to present the basics of metric spaces in a natural and intuitive way and encourage students to think geometrically while actively participating in the learning of this subject. In this book, the authors illustrated the strategy of the proofs of various theorems that motivate readers to complete them on their own. Bits of pertinent history are infused in the text, including brief biographies of some of the central players in the development of metric spaces. The textbook is divided into seven chapters that contain the main materials on metric spaces; namely, introductory concepts, completeness, compactness, connectedness, continuous functions and metric fixed point theorems with applications. Some of the noteworthy features of this book include · Diagrammatic illustrations that encourage readers to think geometrically · Focus on systematic strategy to generate ideas for the proofs of theorems · A wealth of remarks, observations along with a variety of exercises · Historical notes and brief biographies appearing throughout the text




Functional Analysis


Book Description




Metric Spaces


Book Description

An introduction to metric spaces for those interested in the applications as well as theory.




Topology of Metric Spaces


Book Description

"Topology of Metric Spaces gives a very streamlined development of a course in metric space topology emphasizing only the most useful concepts, concrete spaces and geometric ideas to encourage geometric thinking, to treat this as a preparatory ground for a general topology course, to use this course as a surrogate for real analysis and to help the students gain some perspective of modern analysis." "Eminently suitable for self-study, this book may also be used as a supplementary text for courses in general (or point-set) topology so that students will acquire a lot of concrete examples of spaces and maps."--BOOK JACKET.




Metric Spaces


Book Description

The abstract concepts of metric spaces are often perceived as difficult. This book offers a unique approach to the subject which gives readers the advantage of a new perspective on ideas familiar from the analysis of a real line. Rather than passing quickly from the definition of a metric to the more abstract concepts of convergence and continuity, the author takes the concrete notion of distance as far as possible, illustrating the text with examples and naturally arising questions. Attention to detail at this stage is designed to prepare the reader to understand the more abstract ideas with relative ease.




Spaces: An Introduction to Real Analysis


Book Description

Spaces is a modern introduction to real analysis at the advanced undergraduate level. It is forward-looking in the sense that it first and foremost aims to provide students with the concepts and techniques they need in order to follow more advanced courses in mathematical analysis and neighboring fields. The only prerequisites are a solid understanding of calculus and linear algebra. Two introductory chapters will help students with the transition from computation-based calculus to theory-based analysis. The main topics covered are metric spaces, spaces of continuous functions, normed spaces, differentiation in normed spaces, measure and integration theory, and Fourier series. Although some of the topics are more advanced than what is usually found in books of this level, care is taken to present the material in a way that is suitable for the intended audience: concepts are carefully introduced and motivated, and proofs are presented in full detail. Applications to differential equations and Fourier analysis are used to illustrate the power of the theory, and exercises of all levels from routine to real challenges help students develop their skills and understanding. The text has been tested in classes at the University of Oslo over a number of years.




Metric Spaces


Book Description

One of the first books to be dedicated specifically to metric spaces Full of worked examples, to get complex ideas across more easily




Real Analysis


Book Description

A text for a first graduate course in real analysis for students in pure and applied mathematics, statistics, education, engineering, and economics.