Introduction to the Physical and Biological Oceanography of Shelf Seas


Book Description

In this exciting and innovative textbook, two leading oceanographers bring together the fundamental physics and biology of the coastal ocean in a quantitative but accessible way for undergraduate and graduate students. Shelf sea processes are comprehensively explained from first principles using an integrated approach to oceanography that helps build a clear understanding of how shelf sea physics underpins key biological processes in these environmentally sensitive regions. Using many observational and model examples, worked problems and software tools, the authors explain the range of physical controls on primary biological production and shelf sea ecosystems. Boxes throughout the book present extra detail for each topic and non-mathematical summary points are provided for physics sections, allowing students to develop an intuitive understanding. The book is fully supported by extensive online materials, including worked solutions to end-of-chapter exercises, additional homework/exam problems with solutions and simple MATLAB and FORTRAN models for running simulations.




Oceanography and Marine Biology


Book Description

Oceanography and Marine Biology preserves the basic elements of the physical, chemical, and geological aspects of the marine sciences, and merges those fundamentals into a broader framework of marine biology and ecology. Existing textbooks on oceanography or marine biology address the companion field only cursorily: very few pages in oceanography texts are devoted to marine biology, and vice versa. This new book overcomes that imbalance, bringing these disparate marine science text formats closer together, giving them more equal weight, and introducing more effectively the physical sciences by showing students with everyday examples how such concepts form the foundation upon which to build a better understanding of the marine environment in a changing world. Lecturer supplements will also be available.




Modeling Methods for Marine Science


Book Description

This advanced textbook on modeling, data analysis and numerical techniques for marine science has been developed from a course taught by the authors for many years at the Woods Hole Oceanographic Institute. The first part covers statistics: singular value decomposition, error propagation, least squares regression, principal component analysis, time series analysis and objective interpolation. The second part deals with modeling techniques: finite differences, stability analysis and optimization. The third part describes case studies of actual ocean models of ever increasing dimensionality and complexity, starting with zero-dimensional models and finishing with three-dimensional general circulation models. Throughout the book hands-on computational examples are introduced using the MATLAB programming language and the principles of scientific visualization are emphasised. Ideal as a textbook for advanced students of oceanography on courses in data analysis and numerical modeling, the book is also an invaluable resource for a broad range of scientists undertaking modeling in chemical, biological, geological and physical oceanography.




How the Ocean Works


Book Description

The world's oceans account for roughly 71 percent of the planet's surface and 99 percent of its livable volume. Any study of this huge habitat requires a solid foundation in the principles that underlie marine biology and physical and chemical oceanography, yet until now undergraduate textbooks have largely presented compilations of facts rather than explanations of principles. How the Ocean Works fills this gap, providing a concise and accessible college-level introduction to marine science that is also ideal for general readers. How are winds and currents driven? What is the dilemma of the two-layered ocean? Mark Denny explains key concepts like these in rich and fascinating detail. He explores early scientific knowledge of oceans, photosynthesis, trophic interactions and energy flow, and the impacts of human activities on marine and atmospheric systems. Focusing each chapter on a major topic and carefully explaining the principles and theory involved, Denny gives readers the conceptual building blocks needed to develop a coherent picture of the living ocean. How the Ocean Works is an indispensable resource that teaches readers how to think about the ocean--its biology, mechanics, and conservation. Provides a concise, up-to-date introduction to marine science Develops the conceptual basis needed to understand how the ocean works Explains fundamental principles and theory Includes color illustrations and informative diagrams Serves as a college textbook and a reference for general readers Some images inside the book are unavailable due to digital copyright restrictions.




Introduction to Physical Oceanography


Book Description

This book is written for college juniors and seniors and new graduate students in meteorology, ocean engineering, and oceanography. It begins with a brief overview of what is known about the ocean. This is followed by a description of the ocean basins, for the shape of the seas influences the physical processes in the water. Next, students will study the external forces, wind and heat, acting on the ocean, and the ocean's response. It also includes the equations describing dynamic response of the ocean. For example, the equations of motion, the influence of earth's rotation, and viscosity. Finally, students consider some particular examples: the deep circulation, the equatorial ocean and El NiE no, and the circulation of particular areas of the ocean. Contents: 1) A Voyage of Discovery. 2) The Historical Setting. 3) The Physical Setting. 4) Atmospheric Influences. 5) The Oceanic Heat Budget. 6) Temperature, Salinity and Density. 7) The Equations of Motion. 8) Equations of Motion with Viscosity. 9) Response of the Upper Ocean to Winds. 10) Geostrophic Currents. 11) Wind Driven Ocean Circulation. 12) Vorticity in the Ocean. 13) Deep Circulation in the Ocean. 14) Equatorial Processes. 15) Numerical Models. 16) Ocean Waves. 17) Coastal Processes and Tides."




Spatial Analysis of Coastal Environments


Book Description

This book covers the spatial analytical tools needed to map, monitor and explain or predict coastal features, with accompanying online exercises.




Seafloor Geomorphology as Benthic Habitat


Book Description

Annotation This book provides a synthesis of seabed geomorphology and benthic habitats based on the most recent, up-to-date information. Case studies from around the world are presented.




Encyclopedia of Ocean Sciences


Book Description

The oceans cover 70% of the Earth’s surface, and are critical components of Earth’s climate system. This new edition of Encyclopedia of Ocean Sciences, Six Volume Set summarizes the breadth of knowledge about them, providing revised, up to date entries as well coverage of new topics in the field. New and expanded sections include microbial ecology, high latitude systems and the cryosphere, climate and climate change, hydrothermal and cold seep systems. The structure of the work provides a modern presentation of the field, reflecting the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief. In this framework maximum attention has been devoted to making this an organic and unified reference. Represents a one-stop. organic information resource on the breadth of ocean science research Reflects the input and different perspective of chemical, physical and biological oceanography, the specialized area of expertise of each of the three Editors-in-Chief New and expanded sections include microbial ecology, high latitude systems and climate change Provides scientifically reliable information at a foundational level, making this work a resource for students as well as active researches




Ocean Currents


Book Description

Ocean Currents: Physical Drivers in a Changing World opens with a general introduction to the character, measurement, and simulation of ocean currents, leading to a physical and dynamical framework for understanding the wide variety of flows encountered in the oceans. The book comprises chapters covering distinct aspects of contrasting ocean currents: broad and slow, deep and shallow, narrow and swift, large scale and small scale, low latitudes and high latitudes, and moving in horizontal and vertical planes. Through this approach the authors cover a wide range of applications, from local to global, with considerable geographical context. - Provides analyses of ocean observations and numerical model simulations, highlighting the pathways and drift associated with ocean currents, around the World Ocean, linked to online exercises for instructors and students that extend this perspective - Presents applications to natural phenomena, showing how ocean currents shape marine ecosystems, helping researchers understand the distribution and adaptation of life in the oceans - Addresses societal challenges, specifically how ocean currents disperse pollutants (e.g. plastic) from coastal sources and how the global ocean circulation is central to our changing climate, helping students and researchers develop an interdisciplinary approach to global environmental change




Marine Biology


Book Description

Philip Mladenov provides a comprehensive overview of marine biology, providing a tour of marine life and marine processes that ranges from the polar oceans to tropical coral reefs; and from the intertidal to the hydrothermal vents of the deep sea.