Introduction to the Theory of Abstract Algebras


Book Description

"Suitable for introductory graduate-level courses and independent study, this text presents the basic definitions of the theory of abstract algebra. Following introductory material, each of four chapters focuses on a major theme of universal algebra: subdirect decompositions, direct decompositions, free algebras, and varieties of algebra. Problems and a bibliography supplement the text. "--




Introduction to Abstract Algebra


Book Description

Introduction to Abstract Algebra, Second Edition presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It avoids the usual groups first/rings first dilemma by introducing semigroups and monoids, the multiplicative structures of rings, along with groups.This new edition of a widely adopted textbook covers




Abstract Algebra


Book Description

Abstract Algebra: Theory and Applications is an open-source textbook that is designed to teach the principles and theory of abstract algebra to college juniors and seniors in a rigorous manner. Its strengths include a wide range of exercises, both computational and theoretical, plus many non-trivial applications. The first half of the book presents group theory, through the Sylow theorems, with enough material for a semester-long course. The second half is suitable for a second semester and presents rings, integral domains, Boolean algebras, vector spaces, and fields, concluding with Galois Theory.




A Book of Abstract Algebra


Book Description

Accessible but rigorous, this outstanding text encompasses all of the topics covered by a typical course in elementary abstract algebra. Its easy-to-read treatment offers an intuitive approach, featuring informal discussions followed by thematically arranged exercises. This second edition features additional exercises to improve student familiarity with applications. 1990 edition.




Introduction to Abstract Algebra


Book Description

A new approach to abstract algebra that eases student anxieties by building on fundamentals. Introduction to Abstract Algebra presents a breakthrough approach to teaching one of math's most intimidating concepts. Avoiding the pitfalls common in the standard textbooks, Benjamin Fine, Anthony M. Gaglione, and Gerhard Rosenberger set a pace that allows beginner-level students to follow the progression from familiar topics such as rings, numbers, and groups to more difficult concepts. Classroom tested and revised until students achieved consistent, positive results, this textbook is designed to keep students focused as they learn complex topics. Fine, Gaglione, and Rosenberger's clear explanations prevent students from getting lost as they move deeper and deeper into areas such as abelian groups, fields, and Galois theory. This textbook will help bring about the day when abstract algebra no longer creates intense anxiety but instead challenges students to fully grasp the meaning and power of the approach. Topics covered include: • Rings • Integral domains • The fundamental theorem of arithmetic • Fields • Groups • Lagrange's theorem • Isomorphism theorems for groups • Fundamental theorem of finite abelian groups • The simplicity of An for n5 • Sylow theorems • The Jordan-Hölder theorem • Ring isomorphism theorems • Euclidean domains • Principal ideal domains • The fundamental theorem of algebra • Vector spaces • Algebras • Field extensions: algebraic and transcendental • The fundamental theorem of Galois theory • The insolvability of the quintic




Abstract Algebra


Book Description




Introduction to Abstract Algebra


Book Description

Taking a slightly different approach from similar texts, Introduction to Abstract Algebra presents abstract algebra as the main tool underlying discrete mathematics and the digital world. It helps students fully understand groups, rings, semigroups, and monoids by rigorously building concepts from first principles. A Quick Introduction to Algebra The first three chapters of the book show how functional composition, cycle notation for permutations, and matrix notation for linear functions provide techniques for practical computation. The author also uses equivalence relations to introduce rational numbers and modular arithmetic as well as to present the first isomorphism theorem at the set level. The Basics of Abstract Algebra for a First-Semester Course Subsequent chapters cover orthogonal groups, stochastic matrices, Lagrange’s theorem, and groups of units of monoids. The text also deals with homomorphisms, which lead to Cayley’s theorem of reducing abstract groups to concrete groups of permutations. It then explores rings, integral domains, and fields. Advanced Topics for a Second-Semester Course The final, mostly self-contained chapters delve deeper into the theory of rings, fields, and groups. They discuss modules (such as vector spaces and abelian groups), group theory, and quasigroups.




Abstract Algebra


Book Description

This carefully written textbook offers a thorough introduction to abstract algebra, covering the fundamentals of groups, rings and fields. The first two chapters present preliminary topics such as properties of the integers and equivalence relations. The author then explores the first major algebraic structure, the group, progressing as far as the Sylow theorems and the classification of finite abelian groups. An introduction to ring theory follows, leading to a discussion of fields and polynomials that includes sections on splitting fields and the construction of finite fields. The final part contains applications to public key cryptography as well as classical straightedge and compass constructions. Explaining key topics at a gentle pace, this book is aimed at undergraduate students. It assumes no prior knowledge of the subject and contains over 500 exercises, half of which have detailed solutions provided.




Thinking Algebraically: An Introduction to Abstract Algebra


Book Description

Thinking Algebraically presents the insights of abstract algebra in a welcoming and accessible way. It succeeds in combining the advantages of rings-first and groups-first approaches while avoiding the disadvantages. After an historical overview, the first chapter studies familiar examples and elementary properties of groups and rings simultaneously to motivate the modern understanding of algebra. The text builds intuition for abstract algebra starting from high school algebra. In addition to the standard number systems, polynomials, vectors, and matrices, the first chapter introduces modular arithmetic and dihedral groups. The second chapter builds on these basic examples and properties, enabling students to learn structural ideas common to rings and groups: isomorphism, homomorphism, and direct product. The third chapter investigates introductory group theory. Later chapters delve more deeply into groups, rings, and fields, including Galois theory, and they also introduce other topics, such as lattices. The exposition is clear and conversational throughout. The book has numerous exercises in each section as well as supplemental exercises and projects for each chapter. Many examples and well over 100 figures provide support for learning. Short biographies introduce the mathematicians who proved many of the results. The book presents a pathway to algebraic thinking in a semester- or year-long algebra course.




An Introduction to Abstract Algebra


Book Description

This is a high level introduction to abstract algebra which is aimed at readers whose interests lie in mathematics and in the information and physical sciences. In addition to introducing the main concepts of modern algebra, the book contains numerous applications, which are intended to illustrate the concepts and to convince the reader of the utility and relevance of algebra today. In particular applications to Polya coloring theory, latin squares, Steiner systems and error correcting codes are described. Another feature of the book is that group theory and ring theory are carried further than is often done at this level. There is ample material here for a two semester course in abstract algebra. The importance of proof is stressed and rigorous proofs of almost all results are given. But care has been taken to lead the reader through the proofs by gentle stages. There are nearly 400 problems, of varying degrees of difficulty, to test the reader's skill and progress. The book should be suitable for students in the third or fourth year of study at a North American university or in the second or third year at a university in Europe.