Introduction to Thermal Cloaking


Book Description

This book introduces the fundamental concepts of thermal cloaking based on transformation theory and bilayer theory, under the conduction and convection heat transfer modes. It focuses on thermal cloaking with detailed explanations of the underlying theoretical bases leading to the primary thermal cloaking results in open literature, from an engineering perspective, and with practical application in mind. Also, the authors strive to present the materials with an emphasis on the related physical phenomena and interpretation, to the extent possible. Through this book, engineering students can grasp the fundamental ideas of thermal cloaking and the associated mathematics, thus being better able to initiate their own research and explore new ideas in thermal cloaking. While not intended to be a general reference in the vast field of thermal cloaking research, this book is a unique monograph addressing the theoretical and analytical aspects of thermal cloaking within the scope mentioned above. This book also contains many independent analytical solutions to thermal cloaking problems that are not available in open literature. It is suitable for a three-credit graduate or advanced undergraduate course in engineering science.




Theoretical Thermotics


Book Description

This book focuses on theoretical thermotics, the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. The book covers the basic concepts and mathematical methods, which are necessary to understand thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied with computer simulations and laboratory experiments. This book serves both as a reference work for senior researchers and a study text for zero beginners.




Electromagnetic Nanomaterials


Book Description

ELECTROMAGNETIC METAMATERIALS The book presents an overview of metamaterials current state of development in several domains of application such as electromagnetics, electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics. Metamaterials have become a hot topic in the scientific community in recent years due to their remarkable electromagnetic properties. Metamaterials have the ability to alter electromagnetic and acoustic waves in ways that bulk materials cannot. Electromagnetic Metamaterials: Properties and Applications discusses a wide range of components to make metamaterial-engineered devices. It gives an overview of metamaterials’ current stage of development in a variety of fields such as remote aerospace applications, medical appliances, sensor detectors and monitoring devices of infrastructure, crowd handling, smart solar panels, radomes, high-gain antennas lens, high-frequency communication on the battlefield, ultrasonic detectors, and structures to shield from earthquakes. Audience Researchers and engineers in electromagnetic and electrical engineering, classical optics, microwave and antenna engineering, solid-state physics, materials sciences, and optoelectronics.




Diffusionics


Book Description




Transformation Thermotics and Extended Theories


Book Description

This open access book describes the theory of transformation thermotics and its extended theories for the active control of macroscopic thermal phenomena of artificial systems, which is in sharp contrast to classical thermodynamics comprising the four thermodynamic laws for the passive description of macroscopic thermal phenomena of natural systems. This monograph consists of two parts, i.e., inside and outside metamaterials, and covers the basic concepts and mathematical methods, which are necessary to understand the thermal problems extensively investigated in physics, but also in other disciplines of engineering and materials. The analyses rely on models solved by analytical techniques accompanied by computer simulations and laboratory experiments. This monograph can not only be a bridge linking three first-class disciplines, i.e., physics, thermophysics, and materials science, but also contribute to interdisciplinary development.




Programmable Elastic Metamaterials for Wave Control and Device Applications


Book Description

Emerging from electromagnetic waves and fast extending to acoustic and elastic waves, metamaterials that exhibit extraordinary wave control abilities have been gaining soaring attention. Over the past two decades, elastic metamaterials with engineered microstructures have provided a variety of appealing solutions for controlling elastic waves and vibrations. By tailoring their internal microstructures at a subwavelength scale, elastic metamaterials fruitfully distinct themselves from traditional materials or phononic crystals by their striking functions in wave trajectory manipulation, cloaking, nonreciprocal and topological wave control, as well as low-frequency wave/vibration mitigation and absorption.




Transformation Wave Physics


Book Description

Space–time transformations as a design tool for a new class of composite materials (metamaterials) have proved successful recently. The concept is based on the fact that metamaterials can mimic a transformed but empty space. Light rays follow trajectories according to Fermat’s principle in this transformed electromagnetic, acoustic, or elastic space instead of laboratory space. This allows one to manipulate wave behaviors with various exotic characteristics such as (but not limited to) invisibility cloaks. This book is a collection of works by leading international experts in the fields of electromagnetics, plasmonics, elastodynamics, and diffusion waves. The experimental and theoretical contributions will revolutionize ways to control the propagation of sound, light, and other waves in macroscopic and microscopic scales. The potential applications range from underwater camouflaging and electromagnetic invisibility to enhanced biosensors and protection from harmful physical waves (e.g., tsunamis and earthquakes). This is the first book that deals with transformation physics for all kinds of waves in one volume, covering the newest results from emerging topical subjects such as transformational plasmonics and thermodynamics.




Engineering Optics 2.0


Book Description

This book provides comprehensive information on the history and status quo of a new research field, which we refer to as Engineering Optics 2.0. The content covers both the theoretical basis and the engineering aspects in connection with various applications. The field of Engineering Optics employs optical theories to practical applications in a broad range of areas. However, the foundation of traditional Engineering Optics was formed several hundred years ago, and the field has developed only very gradually. With technological innovations in both the fabrication and characterization of microstructures, the past few decades have witnessed many groundbreaking changes to the bases of optics, including the generalizing of refraction, reflection, diffraction, radiation and absorption theories. These new theories enable us to break through the barriers in traditional optical technologies, yielding revolutionary advances in traditional optical systems such as microscopes, telescopes and lithography systems.




Multiphysics Simulation


Book Description

This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today’s engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, magnetic components, RF components, actuators, and motors; reviews the governing equations for the simulation of related multiphysics problems; outlines relevant (topology and parametric size) optimization methods for electromechanical systems; describes in detail several multiphysics simulation and optimization example studies in both two and three dimensions, with sample numerical code.




SMART Automatics and Energy


Book Description

This book gathers selected papers presented at the International Conference on SMART Automatics and Energy (SMART-ICAE 2021), held in Far Eastern Federal University, Vladivostok, Russian Federation during 7–8 October 2021. The book will be useful for wide range of specialists in the field of designing innovative solutions and organizational measures that increase the efficiency of the use of industry technologies in their various manifestations. The issue is also of interest to scientific and engineering personnel engaged in the achievements and farsighted researches in the area of intellectual technology use for solving of real, applied tasks in various areas of industries and policies of nations and systems and for students and undergraduates studying “Power systems engineering and electrotechnics”, “Automatized systems”, “Managerial systems in power technologies”, etc., and postgraduate students in the corresponding branches of study.