Invariant Means and Finite Representation Theory of $C^*$-Algebras


Book Description

Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.




Invariant Means and Finite Representation Theory of C*-algebras


Book Description

Various subsets of the tracial state space of a unital C$*$-algebra are studied. The largest of these subsets has a natural interpretation as the space of invariant means. II$ 1$-factor representations of a class of C$*$-algebras considered by Sorin Popa are also studied. These algebras are shown to have an unexpected variety of II$ 1$-factor representations. In addition to developing some general theory we also show that these ideas are related to numerous other problems inoperator algebras.




A Course in Finite Group Representation Theory


Book Description

This graduate-level text provides a thorough grounding in the representation theory of finite groups over fields and rings. The book provides a balanced and comprehensive account of the subject, detailing the methods needed to analyze representations that arise in many areas of mathematics. Key topics include the construction and use of character tables, the role of induction and restriction, projective and simple modules for group algebras, indecomposable representations, Brauer characters, and block theory. This classroom-tested text provides motivation through a large number of worked examples, with exercises at the end of each chapter that test the reader's knowledge, provide further examples and practice, and include results not proven in the text. Prerequisites include a graduate course in abstract algebra, and familiarity with the properties of groups, rings, field extensions, and linear algebra.




Introduction to Representation Theory


Book Description

Very roughly speaking, representation theory studies symmetry in linear spaces. It is a beautiful mathematical subject which has many applications, ranging from number theory and combinatorics to geometry, probability theory, quantum mechanics, and quantum field theory. The goal of this book is to give a ``holistic'' introduction to representation theory, presenting it as a unified subject which studies representations of associative algebras and treating the representation theories of groups, Lie algebras, and quivers as special cases. Using this approach, the book covers a number of standard topics in the representation theories of these structures. Theoretical material in the book is supplemented by many problems and exercises which touch upon a lot of additional topics; the more difficult exercises are provided with hints. The book is designed as a textbook for advanced undergraduate and beginning graduate students. It should be accessible to students with a strong background in linear algebra and a basic knowledge of abstract algebra.




Algebras and Representation Theory


Book Description

This carefully written textbook provides an accessible introduction to the representation theory of algebras, including representations of quivers. The book starts with basic topics on algebras and modules, covering fundamental results such as the Jordan-Hölder theorem on composition series, the Artin-Wedderburn theorem on the structure of semisimple algebras and the Krull-Schmidt theorem on indecomposable modules. The authors then go on to study representations of quivers in detail, leading to a complete proof of Gabriel's celebrated theorem characterizing the representation type of quivers in terms of Dynkin diagrams. Requiring only introductory courses on linear algebra and groups, rings and fields, this textbook is aimed at undergraduate students. With numerous examples illustrating abstract concepts, and including more than 200 exercises (with solutions to about a third of them), the book provides an example-driven introduction suitable for self-study and use alongside lecture courses.




Toroidalization of Dominant Morphisms of 3-Folds


Book Description

This book contains a proof that a dominant morphism from a 3-fold $X$ to a variety $Y$ can be made toroidal by blowing up in the target and domain. We give applications to factorization of birational morphisms of 3-folds.




Bernoulli Free-Boundary Problems


Book Description

Questions of existence, multiplicity, and regularity of free boundaries for prescribed data need to be addressed and their solutions lead to nonlinear problems. In this paper an equivalence is established between Bernoulli free-boundary problems and a class of equations for real-valued functions of one real variable.




KAM Stability and Celestial Mechanics


Book Description

KAM theory is a powerful tool apt to prove perpetual stability in Hamiltonian systems, which are a perturbation of integrable ones. The smallness requirements for its applicability are well known to be extremely stringent. A long standing problem, in this context, is the application of KAM theory to ``physical systems'' for ``observable'' values of the perturbation parameters. The authors consider the Restricted, Circular, Planar, Three-Body Problem (RCP3BP), i.e., the problem of studying the planar motions of a small body subject to the gravitational attraction of two primary bodies revolving on circular Keplerian orbits (which are assumed not to be influenced by the small body). When the mass ratio of the two primary bodies is small, the RCP3BP is described by a nearly-integrable Hamiltonian system with two degrees of freedom; in a region of phase space corresponding to nearly elliptical motions with non-small eccentricities, the system is well described by Delaunay variables. The Sun-Jupiter observed motion is nearly circular and an asteroid of the Asteroidal belt may be assumed not to influence the Sun-Jupiter motion. The Jupiter-Sun mass ratio is slightly less than 1/1000. The authors consider the motion of the asteroid 12 Victoria taking into account only the Sun-Jupiter gravitational attraction regarding such a system as a prototype of a RCP3BP. for values of mass ratios up to 1/1000, they prove the existence of two-dimensional KAM tori on a fixed three-dimensional energy level corresponding to the observed energy of the Sun-Jupiter-Victoria system. Such tori trap the evolution of phase points ``close'' to the observed physical data of the Sun-Jupiter-Victoria system. As a consequence, in the RCP3BP description, the motion of Victoria is proven to be forever close to an elliptical motion. The proof is based on: 1) a new iso-energetic KAM theory; 2) an algorithm for computing iso-energetic, approximate Lindstedt series; 3) a computer-aided application of 1)+2) to the Sun-Jupiter-Victoria system. The paper is self-contained but does not include the ($\sim$ 12000 lines) computer programs, which may be obtained by sending an e-mail to one of the authors.




Exponential Genus Problems in One-Relator Products of Groups


Book Description

Exponential equations in free groups were studied initially by Lyndon and Schutzenberger and then by Comerford and Edmunds. Comerford and Edmunds showed that the problem of determining whether or not the class of quadratic exponential equations have solution is decidable, in finitely generated free groups. In this paper the author shows that for finite systems of quadratic exponential equations decidability passes, under certain hypotheses, from the factor groups to free products and one-relator products.




On Necessary and Sufficient Conditions for $L^p$-Estimates of Riesz Transforms Associated to Elliptic Operators on $\mathbb {R}^n$ and Related Estimates


Book Description

This memoir focuses on $Lp$ estimates for objects associated to elliptic operators in divergence form: its semigroup, the gradient of the semigroup, functional calculus, square functions and Riesz transforms. The author introduces four critical numbers associated to the semigroup and its gradient that completely rule the ranges of exponents for the $Lp$ estimates. It appears that the case $p2$ which is new. The author thus recovers in a unified and coherent way many $Lp$ estimates and gives further applications. The key tools from harmonic analysis are two criteria for $Lp$ boundedness, one for $p2$ but in ranges different from the usual intervals $(1,2)$ and $(2,\infty)$.