Inverse Compton Emission from Galactic Supernova Remnants


Book Description

The evidence for particle acceleration in supernova shells comes from electrons whose synchrotron emission is observed in radio and X-rays. Recent observations by the HESS instrument reveal that supernova remnants also emit TeV {gamma}-rays; long awaited experimental evidence that supernova remnants can accelerate cosmic rays up to the ''knee'' energies. Still, uncertainty exists whether these {gamma}-rays are produced by electrons via inverse Compton scattering or by protons via {pi}{sup 0}-decay. The multi-wavelength spectra of supernova remnants can be fitted with both mechanisms, although a preference is often given to {pi}{sup 0}-decay due to the spectral shape at very high energies. A recent study of the interstellar radiation field indicates that its energy density, especially in the inner Galaxy, is higher than previously thought. In this paper we evaluate the effect of the interstellar radiation field on the inverse Compton emission of electrons accelerated in a supernova remnant located at different distances from the Galactic Centre. We show that contribution of optical and infra-red photons to the inverse Compton emission may exceed the contribution of cosmic microwave background and in some cases broaden the resulted {gamma}-ray spectrum. Additionally, we show that if a supernova remnant is located close to the Galactic Centre its {gamma}-ray spectrum will exhibit a ''universal'' cutoff at very high energies due to the Klein-Nishina effect and not due to the cut-off of the electron spectrum. As an example, we apply our calculations to the supernova remnants RX J1713.7-3946 and G0.9+0.1 recently observed by HESS.




Study of Non-thermal Emission from Supernova Remnants and Cosmic Ray Injection in the Milky Way Using the Fermi Large Area Telescope


Book Description

Supernova remnants (SNRs) are the only class of sources known in our Galaxy capable of providing the energy necessary to power the bulk of the Galactic cosmic-rays (CRs) below the `knee' (~ 3 PeV). They are observable across the entire frequency spectrum from radio to TeV gamma-rays, and are known to exhibit a rich variety of complex morphologies in multi-wavelength. Non-thermal emissions from SNRs in X-ray and gamma-ray arise from interaction between particles accelerated by the SNR blast wave and the surrounding medium, and are hence one of the most useful probe for the Galactic CR production process. In this thesis, we will try to obtain a fuller understanding of the origin of Galactic CRs through studying non-thermal emissions from SNRs and modelling CR injection from their astrophysical accelerators. In the first part of the thesis, we will develop a robust tool to simulate time and space-resolved broadband emission from young shell-type SNRs using coupled hydrodynamic and diffusive shock acceleration (DSA) calculations. Usually, the DSA process is expected to be highly non-linear for young SNRs due to a number of postulated coupling phenomena, which leads to the inter-correlation of the emission spectra and morphology at different wavelengths. Therefore, to gain the full picture, it is important to combine multi-wavelength observations and the relevant physical processes into a self-consistent and flexible calculation framework. By taking into account particle transport, escape, interaction and various radiative processes, our tool can predict photon emissivity in full three-dimension and multi-wavelength for any given SNR model and surrounding environment, such as in the presence of a nearby molecular cloud. Through illustrations using a few typical models for Type Ia SNR, we will demonstrate its capability of calculating results directly comparable to observations, as well as to pinpoint the gamma-ray emission mechanism, namely the leptonic and hadronic scenarios. In the second part, we will study the gamma-ray emission from a middle-aged SNR IC 443 (G189.1+3.0) using the Fermi Large Area Telescope (LAT). IC 443 has been extensively studied in the past few decades through radio to TeV gamma-ray, but high quality data in the sub-GeV to sub-TeV band, the most crucial window for constraining the origin of the high-energy emission, has still been missing. We will fill in this gap by analyzing LAT data from 200 MeV to 50 GeV using the 1st year of LAT data. Equipped with the high photon statistics available, and the excellent resolution, sensitivity and low background rate of LAT, we are able to probe the gamma-ray emission from IC 443 with minimal confusion with the backgrounds. We discovered spatially extended emission from IC 443 in the 1 - 50 GeV band for the first time, which eliminates the pulsar wind nebula (PWN) as the dominating gamma-ray emitter. We found good spatial correlation of the GeV mission with the TeV source recently detected by VERITAS, as well as a known group of ambient and shocked molecular clouds (MC). The sub-GeV to TeV broadband spectrum can be described by a power-law with a smooth break at a few GeV, the same feature also observed from several other LAT-detected middle-aged SNRs interacting with MCs. We will argue that the gamma-ray emission is most naturally explained by a neutral pion decay dominated origin, and the leptonic scenarios are disfavored. Finally, we will also discuss the major discoveries from LAT observations of other gamma-ray bright Galactic SNRs during the first 2 years of operation of Fermi. In the last part, we will construct a model of Galactic CR injection using constraints from most recent GeV and TeV observation data and CR measurements, which can provide a natural explanation for the enhanced positron flux above 10 GeV recently observed by PAMELA as compared to previous measurements. Without making speculation on `additional' positron contribution from any special nearby objects or resorting to exotic phenomena, we will look at a steady-state picture of our Galaxy in which the ensembles of SNRs and PWNe steadily inject CRs into the interstellar space. Using the GALPROP CR propagation code, the CR spectra and ratios at Earth are calculated and compared with data. Without tweaking the model parameters specifically to fit the positron data other than using observation and astrophysics-based assumptions, we will show that this steady-state model can satisfactorily reproduce the positron enhancement and other CR measurement results. Assisted by recent observations of middle-aged SNRs interacting with MCs by Fermi LAT, we are also able to set an upper-limit on the total number of these systems residing in our Galaxy. Finally, using this consistent model, we will estimate the energy budgets of the major species of Galactic CRs.




Physics and Evolution of Supernova Remnants


Book Description

Written by a leading expert, this monograph presents recent developments on supernova remnants, with the inclusion of results from various satellites and ground-based instruments. The book details the physics and evolution of supernova remnants, as well as provides an up-to-date account of recent multiwavelength results. Supernova remnants provide vital clues about the actual supernova explosions from X-ray spectroscopy of the supernova material, or from the imprints the progenitors had on the ambient medium supernova remnants are interacting with - all of which the author discusses in great detail. The way in which supernova remnants are classified, is reviewed and explained early on. A chapter is devoted to the related topic of pulsar wind nebulae, and neutron stars associated with supernova remnants. The book also includes an extended part on radiative processes, collisionless shock physics and cosmic-ray acceleration, making this book applicable to a wide variety of astronomical sub-disciplines. With its coverage of fundamental physics and careful review of the state of the field, the book serves as both textbook for advanced students and as reference for researchers in the field.




Supernova Remnants and their X-Ray Emission


Book Description

IAU Symposium 101, Supernova Remnants and Their X-ray Emission, was held on the Island of San Giorgio, Venice, 30 August - 2 September 1982. It was co-sponsored by the National Research Council, Italy, the University of Padua, the Observatory of Padua, and the International Astronomical Union, and was hosted by the Cini Foundation. The contents of this volume show the wide range of disciplines that are involved in supernova remnant research. Many new results were presented, not only from the X-ray observations from the Einstein Observatory but also from observations at optical and radio wavelengths. This has led to the stimulation of theoretical work, much of which attempts to accommodate in a more unified way all of these observations. Research on supernova remnants of all ages was reported. Perhaps the most impressive part of all this work is the way in which observations at all wavelengths have extended well outside the Galaxy to other members of the Local Group and beyond. The Symposium was attended by scientists from 15 countries. Twenty five invited papers and sixty-eight shorter contributions were presented during the 4-day meeting. Thirty-three of these shorter contributions were presented in poster sessions. This volume contains almost all (89) of those contributions. They are followed by discussions which took place after each verbal presentation. Since the availability of the discussions was left to the individual contributors, they are not complete, but those contained in this volume convey some idea of the nature of the exchanges.




Very High Energy Gamma Rays from Supernova Remnants and Constraints on the Galactic Interstellar Radiation Field


Book Description

The large-scale Galactic interstellar radiation field (ISRF) is the result of stellar emission and dust re-processing of starlight. Where the energy density of the ISRF is high (e.g., the Galactic Centre), the dominant [gamma]-ray emission in individual supernova remnants (SNRs), such as G0.9+0.1, may come from inverse Compton (IC) scattering of the ISRF. Several models of the ISRF exist. The most recent one, which has been calculated by us, predicts a significantly higher ISRF than the well used model of Mathis, Mezger, and Panagia [1]. However, comparison with data is limited to local observations. Based on our current estimate of the ISRF we predict the gamma-ray emission in the SNRs G0.9+0.1 and RXJ1713, and pair-production absorption features above 20 TeV in the spectra of G0.9+0.1, J1713-381, and J1634-472. We discuss how GLAST, along with current and future very high energy instruments, may be able to provide upper bounds on the large-scale ISRF.







Supernovae


Book Description

Supernovae are among the most exciting things occurring in the universe. Much recent research has concentrated on phenomena related to supernovae. For example, the origin of the cosmic rays and the origin of the bulk of the heavy elements seem to be closely associated with the phenomenon of supernovae. With the discovery of the pulsar in the Crab, it seemed clear that supernovae were also intimately as sociated with the formation of neutron stars and perhaps even black holes. The purpose of the conference, of which this volume contains the proceedings, was to bring together the leaders of supernova re search, each of whom has concentrated on different aspects of the problem, to try to form a coherent picture both observationally and theoretically of our current understanding of supernovae. In so doing, key invited talks were presented on the light curves of super novae, both observationally and theoretically; on the possible uses of supernovae, for example in determination of the Hubble Constant; on the formation and evolution of supernova remnants, again both ob servationally and theoretically. The possibility that supernovae might explain quasars was also presented. A review of the current status of statistics of supernovae was presented, giving the rate at which they go off and the implications with regard to what mass stars are the progenitors for supernovae. Again, this was presented both from the observational point of view and from the theoretical stellar evolution point of view.




A Study of the Infrared Emission of Galactic Supernova Remnants


Book Description

This work aims to investigate the nature of the infrared (IR) emission of supernova remnants (SNRs), and to use this radiation to reveal the physical properties of SNRs and the gas and dust they contain. This project has been made possible only recently, following the success of the Infrared Astronomical Satellite (IRAS) in 1983. The first part of this thesis attempts to find the general characteristics of the IR emission of SNRs. A survey of the known galactic SNRs in the IRAS database has been completed. It is found that only one third of the galactic SNRs show detectable IR emission. Many remnants are confused with other galactic IR sources. The youngest SNRs exhibit spectra of relatively warm dust at $sim$90 K. Older SNRs, exhibit spectra that indicate dust grains within the SNRs have temperatures spanning a range from $sim$150 K to $sim$30 K. Supernova remnants can not be distinguished from other galactic IR sources on the basis of their IR colors alone. The second part of this work is a detailed study of the dust within and the IR emission of a single SNR, Puppis A. The IR morphology of Puppis A and its environment reveals that the appearance of the SNR is strongly influenced by its interaction with a nearby molecular cloud. Detailed analysis of the IR emission shows that small grains ($sim$10 A) must be present in the SNR to account for this emission observed at 12 $mu$m and 25 $mu$m. There is some evidence of destruction of grains within the SNR. The temperature and density of the gas in which the dust is embedded, and the geometry of the emitting regions are inferred from the IR emission at specific locations across the SNR.







The Incandescent Remains of Stellar Death


Book Description

When a star dies, it leaves a mark on its surrounding environment. The energy from the supernova explosion forms an expanding shock wave that interacts with interstellar and circumstellar material, creating what we know as a supernova remnant (SNR). If the original star has a mass that is greater than or equal to 8 solar masses, this can also lead to the formation of a rapidly rotating neutron star called a pulsar. As these objects evolve, they interact with the surrounding environment, producing non-thermal and thermal emission. For an SNR, its non-thermal emission arises from a population of relativistic particles being accelerated at the shock front of the SNR, while its thermal emission arises from the shock front heating ejecta and and swept-up interstellar medium to X-ray emitting temperatures. For pulsars, their non-thermal emission arises from relativistic particles being accelerated at the termination shock of a pulsar wind. These particles interact with surrounding magnetic fields and ambient photon fields producing synchrotron and inverse Compton emission which we observe as a pulsar wind nebula (PWN), while its thermal emission arises from the surface of the neutron star. These properties of SNRs and pulsars provide a unique window into studying the acceleration, injection, propagation and interaction of highly energetic particles called cosmic rays with the interstellar medium. In addition, they providing information about the evolution, and dynamics of these objects; properties of the shock fronts; details about the original progenitor star; and the impact that these objects have on their surroundings. The research presented here focuses on analysing the intimate connection between cosmic rays, the non-thermal emission arising from SNRs interacting with molecular clouds, and pulsar wind nebulae; as well as analysing the observational and evolutionary properties of these objects. In this thesis we model the propagation of cosmic rays through the Galaxy in an attempt to characterise a standard cosmic ray background with uncertainties, to reveal the origin of the cosmic ray electron positron anomaly. Furthermore, we analyse the gamma-ray emission from SNRs Kes 79 and MSH 11-61A, which are known to be interacting with molecular clouds, as well as the non-thermal X-ray emission arising from the PWN of PSR J1741-2054. We find that the emission from both SNRs most likely arises from the decay of neutral pions that resulted from the interaction of relativistic ions which are accelerated at the shock-front of a SNR, with ambient material. For PSR J1741-2054, we characterise the properties, minimum magnetic field and minimum energy of the particle population that produces the observed diffuse synchrotron emission that surrounds and trails the pulsar.In addition, we characterise the X-ray emission arising from Kes 79, MSH 11-61A and PSR J1741-2054, in an attempt to shed light on the origin and nature of these objects and their emission. Using X-ray data from XMM-Newton and Suzaku respectively, we probe the temperature, ionisation state, and elemental abundance of the shocked gas of each SNR. This allows us to determine their evolutionary properties, properties of the shock, and mass of the original progenitor; and constrain the density of the X-ray emitting plasma. Using Chandra, we determined the temperature of PSR J1741-2054, as well as characterised its proper motion, velocity, direction of motion, and presence of small scale structure immediately surrounding the pulsar.