Numerical Methods for Inverse Problems


Book Description

This book studies methods to concretely address inverse problems. An inverse problem arises when the causes that produced a given effect must be determined or when one seeks to indirectly estimate the parameters of a physical system. The author uses practical examples to illustrate inverse problems in physical sciences. He presents the techniques and specific methods chosen to solve inverse problems in a general domain of application, choosing to focus on a small number of methods that can be used in most applications. This book is aimed at readers with a mathematical and scientific computing background. Despite this, it is a book with a practical perspective. The methods described are applicable, have been applied, and are often illustrated by numerical examples.




Numerical Regularization for Atmospheric Inverse Problems


Book Description

The retrieval problems arising in atmospheric remote sensing belong to the class of the - called discrete ill-posed problems. These problems are unstable under data perturbations, and can be solved by numerical regularization methods, in which the solution is stabilized by taking additional information into account. The goal of this research monograph is to present and analyze numerical algorithms for atmospheric retrieval. The book is aimed at physicists and engineers with some ba- ground in numerical linear algebra and matrix computations. Although there are many practical details in this book, for a robust and ef?cient implementation of all numerical algorithms, the reader should consult the literature cited. The data model adopted in our analysis is semi-stochastic. From a practical point of view, there are no signi?cant differences between a semi-stochastic and a determin- tic framework; the differences are relevant from a theoretical point of view, e.g., in the convergence and convergence rates analysis. After an introductory chapter providing the state of the art in passive atmospheric remote sensing, Chapter 2 introduces the concept of ill-posedness for linear discrete eq- tions. To illustrate the dif?culties associated with the solution of discrete ill-posed pr- lems, we consider the temperature retrieval by nadir sounding and analyze the solvability of the discrete equation by using the singular value decomposition of the forward model matrix.




Parameter Estimation and Inverse Problems


Book Description

Parameter Estimation and Inverse Problems, Third Edition, is structured around a course at New Mexico Tech and is designed to be accessible to typical graduate students in the physical sciences who do not have an extensive mathematical background. The book is complemented by a companion website that includes MATLAB codes that correspond to examples that are illustrated with simple, easy to follow problems that illuminate the details of particular numerical methods. Updates to the new edition include more discussions of Laplacian smoothing, an expansion of basis function exercises, the addition of stochastic descent, an improved presentation of Fourier methods and exercises, and more. - Features examples that are illustrated with simple, easy to follow problems that illuminate the details of a particular numerical method - Includes an online instructor's guide that helps professors teach and customize exercises and select homework problems - Covers updated information on adjoint methods that are presented in an accessible manner




Inverse Problems in Scattering and Imaging


Book Description

Inverse Problems in Scattering and Imaging is a collection of lectures from a NATO Advanced Research Workshop that integrates the expertise of physicists and mathematicians in different areas with a common interest in inverse problems. Covering a range of subjects from new developments on the applied mathematics/mathematical physics side to many areas of application, the book achieves a blend of research, review, and tutorial contributions. It is of interest to researchers in the areas of applied mathematics and mathematical physics as well as those working in areas where inverse problems can be applied.




Geophysical Data Analysis: Discrete Inverse Theory


Book Description

Geophysical Data Analysis: Discrete Inverse Theory is an introductory text focusing on discrete inverse theory that is concerned with parameters that either are truly discrete or can be adequately approximated as discrete. Organized into 12 chapters, the book's opening chapters provide a general background of inverse problems and their corresponding solution, as well as some of the basic concepts from probability theory that are applied throughout the text. Chapters 3-7 discuss the solution of the canonical inverse problem, that is, the linear problem with Gaussian statistics, and discussions on problems that are non-Gaussian and nonlinear are covered in Chapters 8 and 9. Chapters 10-12 present examples of the use of inverse theory and a discussion on the numerical algorithms that must be employed to solve inverse problems on a computer. This book is of value to graduate students and many college seniors in the applied sciences.




Inverse Methods in Action


Book Description

This volume contains the Proceedings of a meeting held at Montpellier from November 27th to December 1st 1989 and entitled "Inverse Problems Multicen tennials Meeting". It was held in honor of two major centennials: the foundation of Montpellier University in 1289 and the French Revolution of 1789. The meet ing was one of a series of annual meetings on interdisciplinary aspects of inverse problems organized in Montpellier since 1972 and known as "RCP 264". The meeting was sponsored by the Centre National de la Recherche Scientifique (con tract GR 264) and by the Direction des Recherches et Etudes Techniques (contract 88 CO 283). The Proceedings are presented by chapters on different topics, the choice of topic often being arbitrary. The chapter titles are "Tomographic Inverse Problems", "Distributed Parameters Inverse Problems", "Spectral Inverse Problems (Exact Methods)", "Theoretical hnaging", "Wave Propagation and Scattering Problems (hnaging and Numerical Methods)", "Miscellaneous Problems", "Inverse Methods and Applications to Nonlinear Problems". In each chapter but the first, the papers have been sorted alphabetically according to author*. In the first chapter, a set of theoretical papers is presented first, then more applied ones. There are so many well-known and excellent lectures that I will not try to refer to them all here (the reader will be easily convinced by reading the Table of Contents). My comments at the conference are summarized by the short scientific introduction at the beginning of the volume.




Wavefield Inversion


Book Description

This book provides an up-to-date presentation of a broad range of contemporary problems in inverse scattering involving acoustic, elastic and electromagnetic waves. Descriptions will be given of traditional (but still in use and subject to on-going improvements) and more recent methods for identifying either: a) the homogenized material parameters of (spatially) unbounded or bounded heterogeneous media, or b) the detailed composition (spatial distribution of the material parameters) of unbounded or bounded heterogeneous media, or c) the location, shape, orientation and material characteristics of an object embedded in a wellcharacterized homogeneous, homogenized or heterogeneous unbounded or bounded medium, by inversion of reflected, transmitted or scattered spatiotemporal recorded waveforms resulting from the propagation of probe radiation within the medium.




An Introduction to the Mathematical Theory of Inverse Problems


Book Description

This book introduces the reader to the area of inverse problems. The study of inverse problems is of vital interest to many areas of science and technology such as geophysical exploration, system identification, nondestructive testing and ultrasonic tomography. The aim of this book is twofold: in the first part, the reader is exposed to the basic notions and difficulties encountered with ill-posed problems. Basic properties of regularization methods for linear ill-posed problems are studied by means of several simple analytical and numerical examples. The second part of the book presents two special nonlinear inverse problems in detail - the inverse spectral problem and the inverse scattering problem. The corresponding direct problems are studied with respect to existence, uniqueness and continuous dependence on parameters. Then some theoretical results as well as numerical procedures for the inverse problems are discussed. The choice of material and its presentation in the book are new, thus making it particularly suitable for graduate students. Basic knowledge of real analysis is assumed. In this new edition, the Factorization Method is included as one of the prominent members in this monograph. Since the Factorization Method is particularly simple for the problem of EIT and this field has attracted a lot of attention during the past decade a chapter on EIT has been added in this monograph as Chapter 5 while the chapter on inverse scattering theory is now Chapter 6.The main changes of this second edition compared to the first edition concern only Chapters 5 and 6 and the Appendix A. Chapter 5 introduces the reader to the inverse problem of electrical impedance tomography.




The Inverse Method


Book Description

This book introduces state-of-the-art verification techniques for real-time embedded systems, based on the inverse method for parametric timed automata. It reviews popular formalisms for the specification and verification of timed concurrent systems and, in particular, timed automata as well as several extensions such as timed automata equipped with stopwatches, linear hybrid automata and affine hybrid automata. The inverse method is introduced, and its benefits for guaranteeing robustness in real-time systems are shown. Then, it is shown how an iteration of the inverse method can solve the good parameters problem for parametric timed automata by computing a behavioral cartography of the system. Different extensions are proposed particularly for hybrid systems and applications to scheduling problems using timed automata with stopwatches. Various examples, both from the literature and industry, illustrate the techniques throughout the book. Various parametric verifications are performed, in particular of abstractions of a memory circuit sold by the chipset manufacturer ST-Microelectronics, as well as of the prospective flight control system of the next generation of spacecraft designed by ASTRIUM Space Transportation. Contents: 1. Parametric Timed Automata. 2. The Inverse Method for Parametric Timed Automata. 3. The Inverse Method in Practice: Application to Case Studies. 4. Behavioral Cartography of Timed Automata. 5. Parameter Synthesis for Hybrid Automata. 6. Application to the Robustness Analysis of Scheduling Problems. 7. Conclusion and Perspectives. About the Authors Étienne André is Associate Professor in the Laboratoire d’Informatique de Paris Nord, in the University of Paris 13 (Sorbonne Paris Cité) in France. His current research interests focus on the verification of real-time systems. Romain Soulat is currently completing his PhD at the LSV laboratory at ENS-Cachan in France, focusing on the modeling and verification of hybrid temporal systems.




Quantum Inverse Scattering Method and Correlation Functions


Book Description

The quantum inverse scattering method is a means of finding exact solutions of two-dimensional models in quantum field theory and statistical physics (such as the sine-Go rdon equation or the quantum non-linear Schrödinger equation). These models are the subject of much attention amongst physicists and mathematicians.The present work is an introduction to this important and exciting area. It consists of four parts. The first deals with the Bethe ansatz and calculation of physical quantities. The authors then tackle the theory of the quantum inverse scattering method before applying it in the second half of the book to the calculation of correlation functions. This is one of the most important applications of the method and the authors have made significant contributions to the area. Here they describe some of the most recent and general approaches and include some new results.The book will be essential reading for all mathematical physicists working in field theory and statistical physics.