Investigation of Drillstring Vibration Reduction Tools


Book Description

"Drilling related problems such as drillstring vibration is an important cause of premature failure of drillstring components and drilling inefficiency. The vibration of drillstring interferes with measurement collected while drilling. In severe cases, drillstring vibration will lead to wellbore instability that will result in an increase in the operation cost. In the late 1980's, a lot of studies and techniques were developed to mitigate drillstring vibration and downhole vibration measurements were introduced to the industry in two forms; real time measurements and memory devices measurements. A study of drillstring vibration of three different wells located in the Norwegian North Sea was analyzed. The bottom hole assembly (BHA) of two wells consisted of anti-vibration technology. The study involved a verification of anti stalling technology (AST) and V-stab vibration reduction tools. Part of the study illustrates the different in lateral vibration in different wells of matching lithology which include a statistical analysis of anti-vibration tools performance. Finally, a statistical analysis was conducted on downhole vibration measurement to investigate the sampling rate of the device. Alternating lithology has a big impact on lateral vibration; however, lateral vibration is not the same for different wells in the same formations due to the difference in the BHA assemblies. The study showed that lateral vibration using the V-stab was lower than the one using the AST tool. Considering torsional vibration, the analysis reveled [sic] that V-stab has a lower stick/slip severity than the AST tool. The field study showed that the roller-cone bit generates less torsional vibration than the PDC bit due to different cutting actions. One of the important findings was that there was no correlation between drillstring vibration and mechanical specific Energy (MSE)"--Abstract, leaf iii




The Effect of Well Path, Tortuosity and Drillstring Design on the Transmission of Axial and Torsional Vibrations from the Bit and Mitigation Control Strategies


Book Description

As well designs become increasingly complicated, a complete understanding of drillstring vibrations is key to maximize drilling efficiency, to reduce drillstring dysfunction and to minimize drillstring, tool, and borehole damage. Torque and drag models exist that seek to quantify the effects of borehole inclination and tortuosity on static friction along the drillstring; however, the effects on dynamic friction remains poorly understood. This dissertation begins with a review of the past fifty years of work on drillstring dynamics models, an overview of the proposed control strategies and a summary deployed vibration mitigation applications within the drilling industry. Derivations from first principles of a series of computationally efficient axial and torsional drillstring models in both the frequency and time domains are then presented and verified with field data. The transfer matrix approach is used to predict the severity of axial vibrations along the drillstring and is verified using a series of case studies using field data. Harmonic axial vibrations within drillstrings are either induced intentionally, in the case of axial oscillation tools midway along the drillstring, or unintentional, in the case of bit bounce. Two case studies of bit bounce are first evaluated to ensure model validity for a harmonic excitation at a the bit and the model is found to accurately predict bit bounce based on surface rotation rates. Induced axial oscillations, generated by axial oscillation tools, are then investigated to quantify friction reduction and drilling efficiency improvements. Optimal placement is found to depend on wellbore geometry, but is usually restricted to periodic regions of the drillstring. These optimizations are then verified using field trials and suggest that improved placement can result in 20% or more reduction in friction along the drillstring. Two applications of torsional drillstring vibrations are then investigated -- stick slip mitigation and drillstring imaging. The time domain form of the torsional drillstring model is used first to evaluate the effectiveness of three types of top drive controllers -- stiff controllers, tuned PI controllers and impedance matching controllers -- in mitigating stick slip oscillations. Then, the transfer matrix method is applied to evaluate the effect of wellbore geometry on drillstring mobility to conclude that higher order modes of stick slip may become dominant in non-vertical wellbores. The feasibility of drillstring imaging using torsional signals from surface is then investigated to identify inputs and methods that show promise in three setups of varying complexity -- a hanging beam, a laboratory drillstring model and a drilling rig. Two techniques show promise -- white noise injection and model fitting of a step response -- in identifying larger features, including drillstring length and BHA location. However, low sampling frequencies and low bandwidth inputs reduce the ability to image small features such as friction points along the wellpath.




Low-Complexity Controllers for Time-Delay Systems


Book Description

This volume in the newly established series Advances in Delays and Dynamics (ADD@S) provides a collection of recent results on the design and analysis of Low Complexity Controllers for Time Delay Systems. A widely used indirect method to obtain low order controllers for time delay systems is to design a controller for the reduced order model of the plant. In the dual indirect approach, an infinite dimensional controller is designed first for the original plant model; then, the controller is approximated by keeping track of the degradation in performance and stability robustness measures. The present volume includes new techniques used at different stages of the indirect approach. It also includes new direct design methods for fixed structure and low order controllers. On the other hand, what is meant by low complexity controller is not necessarily low order controller. For example, Smith predictor or similar type of controllers include a copy of the plant internally in the controller, so they are technically infinite dimensional. However, they have very nice numerical properties from the point of reliable implementation. Therefore, such predictor-based controllers are considered as low complexity. This book includes new predictor-based design techniques, with several application examples.




Investigation of Coupled Axial-lateral-torsional Drillstring Vibrations Using a Multi-body Dynamics Approach


Book Description

Drillstring vibration is a very crucial phenomenon which has a great effect on the drilling process. The drillstring is responsible to transfer rotary motion and energy to the drill bit. Unwanted vibration causes reduction in the rate of penetration (ROP), bit wear and connection failure between drillstring parts. In this thesis, a model of a realistic drill collar is generated which can predict any possible motion of the drill collar. This study contains several analyses about drillstring vibration in three main modes. The focus is on the drill collar section of the drillstring because of the importance of this section in vibration generation of the whole drillstring. This study attempts to determine the vibration behavior of the drill collar in axial, lateral and torsional directions in the presence of vibration-assisted rotary drilling (VARD) and unbalanced rotation. The model includes self weight, hydraulic forces due to drilling mud circulation and most realistic boundary condition for each particular scenario. This model also can be used for coupled vibration states and determination of vibration behavior of the drillstring in three coupled modes, simultaneously. Simulation results show the vibration behavior of the drillstring due to several cases and boundary conditions. The time response to each single mode is expressed and will be validated by finite element method (FEM). The vibration behavior of the rotating drillstring in three coupled modes will be studied using unbalanced rotation of the drillstring. The rock-bit interaction will also be applied to the model. Finally, the effect of the VARD tool will be examined.










Modeling and Control of Drillstring Dynamics for Vibration Suppression


Book Description

Drill-string vibrations could cause fatigue failure to downhole tools, bring damage to the wellbore, and decrease drilling efficiency; therefore, it is important to understand the drill-string dynamics through accurately modeling of the drill-string and bottom-hole assembly (BHA) dynamics, and then develop controllers to suppress the vibrations. Modeling drill-string dynamics for directional drilling operation is highly challenging because the drill-string and BHA bend with large curvatures. In addition, the interaction between the drill-string and wellbore wall could occur along the entire well. This fact complicates the boundary condition of modeling of drill-string dynamics. This dissertation presents a finite element method (FEM) model to characterize the dynamics of a directional drill-string. Based on the principle of virtual work, the developed method linearizes the drill-string dynamics around the central axis of a directional well, which significantly reduced the computational cost. In addition, a six DOF curved beam element is derived to model a curved drill-string. It achieves higher accuracy than the widely used straight beam element in both static and dynamic analyses. As a result, fewer curved beam elements are used to achieve the same accuracy, which further reduces the computational cost. During this research, a comprehensive drill-string and wellbore interaction model is developed as the boundary condition to simulate realistic drilling scenarios. Both static and dynamic analyses are carried out using the developed modeling framework. The static simulation can generate drill-string internal force as well as the drilling torque and drag force. The dynamic simulation can provide an insight of the underlying mechanism of drilling vibrations. Top drive controllers are also incorporated as torsional boundary conditions. The guidelines for tuning the control parameters are obtained from dynamic simulations. Drill-string vibrations can be suppressed through BHA configuration optimization. Based on the developed modeling framework, the BHA dynamic performance is evaluated using vibration indices. With an objective to minimize these indices, a genetic algorithm is developed to optimize the BHA stabilizer location for vibration suppression. After optimization, the BHA strain energy and the stabilizer side force, two of the vibration indices, are significantly reduced compared to the original design, which proves the BHA optimization method can lead to a significant reduction of undesirable drilling dynamics. At the end of this dissertation, reduced order models are also discussed for fast simulation and control design for real time operation




Analysis and Control of Oilwell Drilling Vibrations


Book Description

This book reports the results of exhaustive research work on modeling and control of vertical oil well drilling systems. It is focused on the analysis of the system-dynamic response and the elimination of the most damaging drill string vibration modes affecting overall perforation performance: stick-slip (torsional vibration) and bit-bounce (axial vibration). The text is organized in three parts. The first part, Modeling, presents lumped- and distributed-parameter models that allow the dynamic behavior of the drill string to be characterized; a comprehensive mathematical model taking into account mechanical and electric components of the overall drilling system is also provided. The distributed nature of the system is accommodated by considering a system of wave equations subject to nonlinear boundary conditions; this model is transformed into a pair of neutral-type time-delay equations which can overcome the complexity involved in the analysis and simulation of the partial differential equation model. The second part, Analysis, is devoted to the study of the response of the system described by the time-delay model; important properties useful for analyzing system stability are investigated and frequency- and time-domain techniques are reviewed. Part III, Control, concerns the design of stabilizing control laws aimed at eliminating undesirable drilling vibrations; diverse control techniques based on infinite--dimensional system representations are designed and evaluated. The control proposals are shown to be effective in suppressing stick-slip and bit-bounce so that a considerable improvement of the overall drilling performance can be achieved. This self-contained book provides operational guidelines to avoid drilling vibrations. Furthermore, since the modeling and control techniques presented here can be generalized to treat diverse engineering problems, it constitutes a useful resource to researchers working on control and its engineering application in oil well drilling.




Data Mining in Structural Dynamic Analysis


Book Description

This book highlights the applications of data mining technologies in structural dynamic analysis, including structural design, optimization, parameter identification, model updating, damage identification, in civil, mechanical, and aerospace engineering. These engineering applications require precise structural design, fabrication, inspection, and further monitoring to obtain a full life-cycle analysis, and by focusing on data processing, data mining technologies offer another aspect in structural dynamic analysis. Discussing techniques in time/frequency domain, such as Hilbert transforms, wavelet theory, and machine learning for structural dynamic analysis to help in structural monitoring and diagnosis, the book is an essential reference resource for beginners, graduates and industrial professionals in various fields.