Neural Network Dynamics


Book Description

Neural Network Dynamics is the latest volume in the Perspectives in Neural Computing series. It contains papers presented at the 1991 Workshop on Complex Dynamics in Neural Networks, held at IIASS in Vietri, Italy. The workshop encompassed a wide range of topics in which neural networks play a fundamental role, and aimed to bridge the gap between neural computation and computational neuroscience. The papers - which have been updated where necessary to include new results - are divided into four sections, covering the foundations of neural network dynamics, oscillatory neural networks, as well as scientific and biological applications of neural networks. Among the topics discussed are: A general analysis of neural network activity; Descriptions of various network architectures and nodes; Correlated neuronal firing; A theoretical framework for analyzing the behaviour of real and simulated neuronal networks; The structural properties of proteins; Nuclear phenomenology; Resonance searches in high energy physics; The investigation of information storage; Visual cortical architecture; Visual processing. Neural Network Dynamics is the first volume to cover neural networks and computational neuroscience in such detail. Although it is primarily aimed at researchers and postgraduate students in the above disciplines, it will also be of interest to researchers in electrical engineering, medicine, psychology and philosophy.




Neural Network Design


Book Description




Introduction to Neural Dynamics and Signal Transmission Delay


Book Description

In the design of a neural network, either for biological modeling, cognitive simulation, numerical computation or engineering applications, it is important to investigate the network's computational performance which is usually described by the long-term behaviors, called dynamics, of the model equations. The purpose of this book is to give an introduction to the mathematical modeling and analysis of networks of neurons from the viewpoint of dynamical systems.




Neural Networks: Computational Models and Applications


Book Description

Neural Networks: Computational Models and Applications presents important theoretical and practical issues in neural networks, including the learning algorithms of feed-forward neural networks, various dynamical properties of recurrent neural networks, winner-take-all networks and their applications in broad manifolds of computational intelligence: pattern recognition, uniform approximation, constrained optimization, NP-hard problems, and image segmentation. The book offers a compact, insightful understanding of the broad and rapidly growing neural networks domain.




Probabilistic Modeling in Bioinformatics and Medical Informatics


Book Description

Probabilistic Modelling in Bioinformatics and Medical Informatics has been written for researchers and students in statistics, machine learning, and the biological sciences. The first part of this book provides a self-contained introduction to the methodology of Bayesian networks. The following parts demonstrate how these methods are applied in bioinformatics and medical informatics. All three fields - the methodology of probabilistic modeling, bioinformatics, and medical informatics - are evolving very quickly. The text should therefore be seen as an introduction, offering both elementary tutorials as well as more advanced applications and case studies.




The Functional Role of Critical Dynamics in Neural Systems


Book Description

This book offers a timely overview of theories and methods developed by an authoritative group of researchers to understand the link between criticality and brain functioning. Cortical information processing in particular and brain function in general rely heavily on the collective dynamics of neurons and networks distributed over many brain areas. A key concept for characterizing and understanding brain dynamics is the idea that networks operate near a critical state, which offers several potential benefits for computation and information processing. However, there is still a large gap between research on criticality and understanding brain function. For example, cortical networks are not homogeneous but highly structured, they are not in a state of spontaneous activation but strongly driven by changing external stimuli, and they process information with respect to behavioral goals. So far the questions relating to how critical dynamics may support computation in this complex setting, and whether they can outperform other information processing schemes remain open. Based on the workshop “Dynamical Network States, Criticality and Cortical Function", held in March 2017 at the Hanse Institute for Advanced Studies (HWK) in Delmenhorst, Germany, the book provides readers with extensive information on these topics, as well as tools and ideas to answer the above-mentioned questions. It is meant for physicists, computational and systems neuroscientists, and biologists.







Neural Systems for Control


Book Description

Control problems offer an industrially important application and a guide to understanding control systems for those working in Neural Networks. Neural Systems for Control represents the most up-to-date developments in the rapidly growing aplication area of neural networks and focuses on research in natural and artifical neural systems directly applicable to control or making use of modern control theory. The book covers such important new developments in control systems such as intelligent sensors in semiconductor wafer manufacturing; the relation between muscles and cerebral neurons in speech recognition; online compensation of reconfigurable control for spacecraft aircraft and other systems; applications to rolling mills, robotics and process control; the usage of past output data to identify nonlinear systems by neural networks; neural approximate optimal control; model-free nonlinear control; and neural control based on a regulation of physiological investigation/blood pressure control. All researchers and students dealing with control systems will find the fascinating Neural Systems for Control of immense interest and assistance. - Focuses on research in natural and artifical neural systems directly applicable to contol or making use of modern control theory - Represents the most up-to-date developments in this rapidly growing application area of neural networks - Takes a new and novel approach to system identification and synthesis




Hierarchy and dynamics in neural networks


Book Description

Hierarchy is a central feature in the organisation of complex biological systems and particularly the structure and function of neural networks. While other aspects of brain connectivity such as regionalisation, modularity or motif composition have been discussed elsewhere, no detailed analysis has been presented so far on the role of hierarchy and its connection to brain dynamics. Recent discussions among many of our colleagues have shown an increasing interest in hierarchy (of spatial, temporal and dynamic features), and this is an emerging key question in neuroscience as well as generally in the field of network science, due to its links with concepts of control, efficiency and development across scales (e.g. Hilgetag et al. Science, 1996; Ravasz et al. Science, 2002; Bassett et al. PNAS, 2006; Mueller-Linow et al. PLoS Comp. Biol., in press). The proposed Research Topic will address recent findings from a theoretical as well as experimental perspective including contributions under the following four headings: 1) Topology: Detecting and characterizing network hierarchy; 2) Experiments: Neural dynamics across hierarchical scales; 3) Dynamics: Activity spread, oscillations, and synchronization in hierarchical networks; 4) Dynamics: Stable functioning and information processing in hierarchical networks.




Advances in Neural Networks - ISNN 2005


Book Description

The three volume set LNCS 3496/3497/3498 constitutes the refereed proceedings of the Second International Symposium on Neural Networks, ISNN 2005, held in Chongqing, China in May/June 2005. The 483 revised papers presented were carefully reviewed and selected from 1.425 submissions. The papers are organized in topical sections on theoretical analysis, model design, learning methods, optimization methods, kernel methods, component analysis, pattern analysis, systems modeling, signal processing, image processing, financial analysis, control systems, robotic systems, telecommunication networks, incidence detection, fault diagnosis, power systems, biomedical applications, industrial applications, and other applications.