Physical Methods of Chemistry, Investigations of Surfaces and Interfaces


Book Description

Each volume of this series heralds profound changes in both the perception and practice of chemistry. This edition presents the state of the art of all important methods of instrumental chemical analysis, measurement and control. Contributions offer introductions together with sufficient detail to give a clear understanding of basic theory and apparatus involved and an appreciation of the value, potential and limitations of the respective techniques. The emphasis of the subjects treated is on method rather than results, thus aiding the investigator in applying the techniques successfully in the laboratory.







Liquid Surfaces and Interfaces


Book Description

A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.




Chemical Bonding at Surfaces and Interfaces


Book Description

Molecular surface science has made enormous progress in the past 30 years. The development can be characterized by a revolution in fundamental knowledge obtained from simple model systems and by an explosion in the number of experimental techniques. The last 10 years has seen an equally rapid development of quantum mechanical modeling of surface processes using Density Functional Theory (DFT). Chemical Bonding at Surfaces and Interfaces focuses on phenomena and concepts rather than on experimental or theoretical techniques. The aim is to provide the common basis for describing the interaction of atoms and molecules with surfaces and this to be used very broadly in science and technology. The book begins with an overview of structural information on surface adsorbates and discusses the structure of a number of important chemisorption systems. Chapter 2 describes in detail the chemical bond between atoms or molecules and a metal surface in the observed surface structures. A detailed description of experimental information on the dynamics of bond-formation and bond-breaking at surfaces make up Chapter 3. Followed by an in-depth analysis of aspects of heterogeneous catalysis based on the d-band model. In Chapter 5 adsorption and chemistry on the enormously important Si and Ge semiconductor surfaces are covered. In the remaining two Chapters the book moves on from solid-gas interfaces and looks at solid-liquid interface processes. In the final chapter an overview is given of the environmentally important chemical processes occurring on mineral and oxide surfaces in contact with water and electrolytes. - Gives examples of how modern theoretical DFT techniques can be used to design heterogeneous catalysts - This book suits the rapid introduction of methods and concepts from surface science into a broad range of scientific disciplines where the interaction between a solid and the surrounding gas or liquid phase is an essential component - Shows how insight into chemical bonding at surfaces can be applied to a range of scientific problems in heterogeneous catalysis, electrochemistry, environmental science and semiconductor processing - Provides both the fundamental perspective and an overview of chemical bonding in terms of structure, electronic structure and dynamics of bond rearrangements at surfaces




Computer Simulations of Surfaces and Interfaces


Book Description

Proceedings of the NATO Advanced Study Institute, Albena, Bulgaria, from 9 to 20 September 2002




Chemistry of Functional Materials Surfaces and Interfaces


Book Description

Chemistry of Functional Materials Surfaces and Interfaces: Fundamentals and Applications gives a descriptive account of interfacial phenomena step-by-step, from simple to complex, to provide readers with a strong foundation of knowledge in interfacial materials chemistry. Many case studies are provided to give real-world examples of problems and their solutions, allowing readers to make the connection between fundamental understanding and applications. Emerging applications in nanomaterials and nanotechnology are also discussed. Throughout the book, the author explains the common interface and surface equations, models, methods, and applications in the creation of functional materials. The goal of Chemistry of Functional Materials Surfaces and Interfaces is to provide readers with the basic understanding of the common tools of surface and interface chemistry for application in materials science and nanotechnology. This book is suitable for researchers and practitioners in the disciplines of materials science and engineering and surface and interface chemistry. Includes numerous real-world examples and case studies throughout Addresses emerging applications of interfacial materials chemistry in nanomaterials and nanotechnology Provides the foundational concepts of surface and interfacial science with models, equation, and methods




Surface Activity in Drug Action


Book Description

Surface activity is present in living systems; for example in body fluid or cell soup and molecules of surface-active nature are crucial to living matter and its organization. Surface Activity in Drug Action proposes "a liquid membrane hypothesis of drug action" for surface-active drugs. Chapters 1-7 contains an account of the hypothesis and chapter 8 contains a general account of the application of surface activity in therapeutics. The methodology and presentation of the information makes Surface Activity in Drug Action valuable reading for students and researchers interested in surface activity.* Is clearly written * Includes contributions from prominent names in the field, such as Bhise and Subrahmanyam* Contains a general account of the application of surface activity in therapeutics




Surfaces and Interfaces for Biomaterials


Book Description

Given such problems as rejection, the interface between an implant and its human host is a critical area in biomaterials. Surfaces and Interfaces for Biomaterials summarizes the wealth of research on understanding the surface properties of biomaterials and the way they interact with human tissue. The first part of the book reviews the way biomaterial surfaces form. Part Two then discusses ways of monitoring and characterizing surface structure and behavior. The final two parts of the book look at a range of in vitro and in vivo studies of the complex interactions between biomaterials and the body. Chapters cover such topics as bone and tissue regeneration, the role of interface interactions in biodegradable biomaterials, microbial biofilm formation, vascular tissue engineering and ways of modifying biomaterial surfaces to improve biocompatibility. Surfaces and Interfaces for Biomaterials will be a standard work on how to understand and control surface processes in ensuring biomaterials are used successfully in medicine.




Surface Polaritons


Book Description

Modern Problems in Condensed Matter Sciences, Volume I: Surface Polaritons: Electromagnetic Waves at Surfaces and Interfaces describes the basic properties of surface polaritons and the methods of generating these waves in the laboratory at frequencies of interest to condensed matter physicists. The selection first elaborates on surface phonon polaritons in dielectrics and semiconductors and surface exciton polaritons from the experimental viewpoint. Discussions focus on interface polaritons; surface vibrations in anisotropic crystals; experimental methods for the excitation and study of surface polaritons; and surface vibrations in isotropic crystals. The publication then ponders on surface electromagnetic wave propagation on metal surfaces; thermally stimulated emission of surface polaritons; and effects of the transition layer and spatial dispersion in the spectra of surface polaritons. The text takes a look at surface polaritons at metal surfaces and interfaces and resonance of transition layer excitations with surface polaritons. Topics include resonance of the film phonon with the substrate surface phonon polaritons; investigations of surface modifications in ultra-high vacuum; and use of surface plasma waves for the investigation of solid-liquid and solid-solid interfaces. The selection is a dependable reference for physicists and engineers wanting to conduct research on surface polaritons.




Novel Methods to Study Interfacial Layers


Book Description

This book presents a number of selected papers given at the LB9 conference, held in Potsdam, Germany, in August 2000. It is dedicated to new techniques and methodologies for studying interfacial layers. One group of manuscripts deals with the application of surface plasmons at solid interfaces, used for example in resonance spectroscopy and light scattering. New applications of various types of Atomic Force Microscopy are reported making use of various modifications of tips. A number of chapters are dedicated to light emitting diodes built with the help of LB layers. The aim of these studies is the improvement of efficiency. Electrochemical methods were described as tools for developing sensors, in particular miniaturised pH or gas sensors.The application of synchrotron X-ray and NMR techniques have been described in detail in two extended chapters. It is demonstrated how molecular information can be detected by these methods for various types of interfacial layers.This monograph, along with 130 papers that have been submitted for publication in the special issues of relevant journals, represent the proceedings of the LBP conference.