Author : National Aeronautics and Space Administration (NASA)
Publisher : Createspace Independent Publishing Platform
Page : 106 pages
File Size : 26,77 MB
Release : 2018-07-18
Category :
ISBN : 9781723218682
Book Description
This document is the final report of the MAUDEE (Mars Upper Atmosphere Dynamics, Energetics, and Evolution) consortium. It describes a low cost Discovery mission to investigate the upper atmosphere of Mars and to understand the manner in which Mars has evolved over geologic time. In keeping with the innovative philosophy permeating the Discovery Program and in order to minimize the burden of reading an extensive prose exposition, a new presentation format has been adopted. The format involves a series of view graphs with facing text. The view graphs form the basis of a complete oral presentation of the MAUDEE mission and the facing text provides more detailed, but still brief, explanatory descriptions. Readers can scan the view graphs and/or read the facing text at their discretion. The oral presentation of this study was given to code SL personnel at NASA Headquarters on February 23, 1994. MAUDEE is an essential component of the Mars Exploration Program. It provides the information required to understand the evolution of the planet via the escape of volatiles. It provides the key measurements needed to understand the upper atmosphere of the last of the three terrestrial planets to be so studied. It connects and supplements investigations based on other Mars missions: Mars Surveyor, Planet-B and Mars-96. The MAUDEE mission plan involves a combination of remote and in-situ sensors, housed in three instrument packages. The sensors make measurements of the atmospheric regions between 60-200 km. These instruments are based on extensive heritage from Earth explorers and Pioneer Venus. The mission scenario has several phases and employs aerobraking maneuvers to lower initial apoapsis, thereby reducing fuel requirements. The spacecraft has body-mounted solar cells, enabling deep diving into the Martian atmosphere. The orbital inclination allows for pole-to-pole latitudinal sweeps in an initial elliptical phase, followed by a circular phase affording detailed diurnal measur...